Learning Volumetric Shape Super-Resolution for Cranial Implant Design

Matthias Eder12, Jianning Li12, Jan Egger123
1 Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria.
2 Computer Algorithms for Medicine Laboratory (Cafe-Lab), Graz, Austria.
3 Department of Oral and Maxillofacial Surgery, Medical University of Graz, Graz, Austria.

INTRODUCTION
Cranioplasty is the process of repairing cranial defects or deformations. The aim of this procedure is to re-establish the aesthetic shape of the head and to protect the brain from further injuries. Shaping the needed cranial implant is often a costly and time-consuming work [1]. Inspired by the development of a web-based fully automated cranial implant design pipeline by Li et al. [2], this study aims to explore a way to ease the implant generation task.

METHOD
We use a deep learning approach and split the implant generation into three stages. First, a convolutional neural network is used to reconstruct the skull at low resolution, then we use a second network to up-sample the result to high resolution. Finally the implant is generated by simple subtraction and filtering.

Figure 1 – Implant generation pipeline.

RECONSTRUCTION
The skull reconstruction is conducted on data with a resolution of 30x30x30. For this task, a network with a U-Net [3] shape was chosen. The encoder/decoder path of the U-Net captured the shape of the human skull, while the skip connection preserved the preexisting details of the input data.

Figure 2 – Input data with cranial defect (left), reconstruction-network output (right).

SUPER-RESOLUTION
The super-resolution network lifted the skull resolution from 30x30x30 to 60x60x60. Again a U-Net shape was chosen for this task. The decoder path utilized the pixel-shuffle technique [4] to increase the voxel count. For comparison, the super-resolution was also conducted via cubic interpolation.

Figure 3 – Low-resolution input (top left), cubic interpolation output (top right), high-resolution target (bottom left), SR-network output (bottom right).

DISCUSSION AND CONCLUSION
The reconstruction network delivered good results on data with 30x30x30 resolution. The skulls were reconstructed without adding unwanted additional structures. In contrast, while the super-resolution network delivered very natural looking results in comparison to a cubic up-sampling stage, it suffered from random blobs which were added to the skull. This happened especially when the input data differed from usual samples, e.g. when the skull was deformed or included artifacts. These hallucinations turned out to be a problem for the final stage, where they lead to problems with the automatic implant generation. While the network hit higher scores compared to the cubic interpolation variant, there is still room for improvement of the hallucination suppression. Either by changing the super-resolution network or the blob-filtering algorithm. In summary, the project showed the potential to create a new and efficient way for automatic cranial implant generation and gave an entry point for future work on higher resolutions.

REFERENCES