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Introduction
Diminished reality (DR) involves virtually removing
real objects from the environment using inpaint-
ing techniques. However, existing methods strug-
gle with maintaining coherent structure and 3D
geometry, particularly for advanced tasks like 3D
scene editing. In response, we introduce DeepDR,
a real-time RGB-D inpainting framework tailored
for DR, ensuring both realistic image and depth in-
painting with minimal artifacts, achieved through
a structure-aware generative network explicitly
conditioned on scene semantics.
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Input images I and depthmapsD are encoded sep-
arately, then fused on a higher dimension for joint
completion. Our semantics-aware decoder com-
prises up blocks conditioning features on semantic
information. Outputs Ito and Dto serve as auxiliary
inputs in a recurrent feedback loop for subsequent
time steps.

DeepDR is a framework for

Diminished Reality that removes

objects from the environment via

real-time, structure-aware image

and depth inpainting.
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get the paper!

Results
We show that DeepDR can outperform related methods on three datasets qualitatively and quantitatively.
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Method LPIPS ↓ FID ↓ Depth RMSE ↓
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[5
] DeepFillV2 [1] 0.0150 0.448 0.572

PanoDR [2] 0.0128 0.606 0.564

E2FGVI [3] 0.0131 0.363 0.563

DeepDR (Ours) 0.0104 0.218 0.278

D
yn

aF
ill
[4
]

DeepFillV2 [1] 0.0238 4.122 7.92

PanoDR [2] 0.0250 5.579 8.12

E2FGVI [3] 0.0169 2.826 7.83

DynaFill [4] 0.0197 2.665 7.78

DeepDR (Ours) 0.0168 2.415 4.51
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[6
] DeepFillV2 [1] 0.0208 0.693 0.508

PanoDR [2] 0.0119 0.348 0.536

E2FGVI [3] 0.0110 0.295 0.512

DeepDR (Ours) 0.0108 0.292 0.484

Structure-aware RGB-D decoder
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Our up blocks predict a semantic segmentation
map Sl from the up-sampled image feature il via
a pyramid pooling module. This segmentation
guides the image and depth feature generation
consistently.
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We employ loss terms and adversarial learning
to enhance the accuracy and realism of inpainted
RGB and depth data (LI, LD). Temporal consis-
tency is ensured through the computation of a
temporal loss Lt using optical flow. We enforce
structural learning by incorporating semantic su-
pervision via Lseg.
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