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Abstract

Virtual Reality, an immersive technology that replicates an environment via computer-simu-

lated reality, gets a lot of attention in the entertainment industry. However, VR has also great

potential in other areas, like the medical domain, Examples are intervention planning, train-

ing and simulation. This is especially of use in medical operations, where an aesthetic out-

come is important, like for facial surgeries. Alas, importing medical data into Virtual Reality

devices is not necessarily trivial, in particular, when a direct connection to a proprietary

application is desired. Moreover, most researcher do not build their medical applications

from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These

platforms have in common that they use libraries like ITK and VTK, and provide a conve-

nient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In

this study, the usage of a Virtual Reality device for medical data under the MeVisLab plat-

form is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a

direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab

platform. Medical data coming from other MeVisLab modules can directly be connected per

drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for

immersive virtual reality inspection.

Introduction

Virtual Reality (VR) places a user inside a computer-generated environment. This paradigm is

becoming increasingly popular, due to the fact that computer graphics have progressed to a

point where the images are often indistinguishable from the real world. The computer-gener-

ated images previously presented in movies, games and other media are now detached from

the physical surroundings and presented in new immersive head-mounted displays (HMD),

like the Oculus Rift, the PlayStation VR or the HTC Vive (Fig 1). Virtual reality not only places

a user inside a computer-generated environment – it is able to completely immerse a user in a

virtual world, removing any restrictions on what a user can do or experience [1–3]. Beside

movies, games, and other media, the medical area has great potential for the newly VR devices,
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because they are also now able to process and display high-resolution medical image data

acquired with modern CT (Computed Tomography) and MRI (Magnetic Resonance Imaging)

scanners [4]. Examples are surgery trainers and simulators, and preoperative surgical planning

[5], [6]. Others already working in the area of medical Virtual Reality are Nunnerley et al. [7],

who tested the feasibility of an immersive 3D virtual reality wheelchair training tool for people

with spinal cord injury. They designed a wheelchair training system that used the Oculus

Rift headset and a joystick. Newbutt et al. [8] studied the usage of the Oculus Rift in autism

patients. Their study explores the acceptance, willingness, sense of presence and immersion of

participants with autism spectrum disorder (ASD). The examination of digital pathology slides

with the virtual reality technology and the Oculus Rift has been explored by Farahani et al. [9].

They applied the Oculus Rift and a Virtual Desktop software to review lymph node cases for

digital pathology. A usability comparison between HMD (Oculus Rift) and stereoscopic desk-

top displays (DeepStream3D) in a VR environment with pain patients has been performed by

Tong et al. [10]. Twenty chronic pain patients assessed the severity of physical discomforts by

trying both displays, while watching a virtual reality pain management demo in a clinical set-

ting. An interactive 3D virtual anatomy puzzle for learning and simulation has been designed

and tested by Messier and collages [11]. The virtual anatomy puzzle is supposed to help users

to learn the anatomy of various organs and systems by manipulating virtual 3D data. It was

implemented with an Oculus Rift. A computer-based system, which can record a surgical pro-

cedure with multiple depth cameras and reconstruct in three dimensions the dynamic geome-

try of the actions and events that occur during the procedure, has been introduced by Cha

et al. [12]. Equipped with a virtual reality headset, such as the Oculus Rift, the user was able to

Fig 1. Illustration of a person using the HTC Vive and controllers (photo filtered with PRISMA 2.2.1

under an iPhone 6s running iOS 9.3.3).

https://doi.org/10.1371/journal.pone.0173972.g001
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walk around the reconstruction of the procedure room, while controlling the playback of the

recorded surgical procedure with simple VCR controls (e.g., play, pause, rewind, and fast for-

ward). Xu et al. [13] studied the accuracy of the Oculus Rift during cervical spine mobility

measurement by designing a virtual reality environment to guide participants to perform cer-

tain neck movements. Subsequently, the cervical spine kinematics was measured by both the

Oculus Rift tracking system and a reference motion tracker. The Oculus Rift has been applied

by Kim et al. [14] as a cost-effective tool for studying visual-vestibular interactions in self-

motion perception. The vection strength has been measured in three conditions of visual

compensation for head movement (1. compensated, 2. uncompensated and 3. inversely com-

pensated). King [15] developed an immersive VR environment for diagnostic imaging. The

environment consisted of a web server acquiring data from volumes loaded within the 3D

Slicer platform [16] and forwarding them to a Unity application (https://unity3d.com/) to ren-

der the scene for the Oculus Rift. However, to the best of the authors’ knowledge, no work

described the integration the HTC Vive into MeVisLab (http://www.mevislab.de/) platform

[17] yet. We developed and implemented a new module for the medical prototyping platform

MeVisLab that provides an interface via the OpenVR library to head mounted displays, enabl-

ing the direct and uncomplicated usage of the HTC Vive in medical applications. Unlike the

Oculus Rift, the room-scale tracking offered by the HTC Vive allows walking around virtual

objects, which enables a more advanced immersion and inspection.

This contribution is organized as follows: Section 2 introduces details of the methods, Sec-

tion 3 presents experimental results and Section 4 concludes the paper and gives an outlook on

future work.

Methods

In this section, the materials and methods that have been used for the integration of the HTC

Vive into the MeVisLab environment via the OpenVR library are introduced.

Datasets

For testing and evaluating our software integration, we used multiple high-resolution CT

(Computed Tomography) scans from the clinical routine. The resolution of the scans consisted

of 512x512 voxels in the x- and the y-direction with an additional few hundred slices in the z-

direction. The scans varied in anatomy and location of pathology, including datasets from

patient skulls with cranial defects. In Fig 2, 3D visualizations of patient skulls with cranial

defects on the left (left) and right side (right) are shown. The medical scans are freely available

for download and usage in own research projects, however, we kindly ask users cite our work

[18], [19]. All relevant data are hosted at the public repository Figshare. Please see data hosted

at Figshare at the following URL:

https://figshare.com/articles/Cranial_Defect_Datasets/4659565.

Note that the datasets from our clinical partners have not been altered or downsampled in

any way. Hence, we assess the visual quality and evaluate the frames per second (fps) when dis-

playing original sized scans inside the HTC Vive.

MeVisLab

This paragraph describes the medical imaging platform MeVisLab (Medical Visualization Labora-

tory), which includes a software development kit (SDK) used to interface with the HTC Vive.

The MeVisLab platform provides basic and advanced algorithms for medical image processing

and visualization. It also includes an environment for programming new modules in C++, as

well as an environment for implementing user interfaces with MDL script (MeVis Description
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Language). MeVisLab allows to construct dataflow networks using a variety of image processing

modules. Developers can employ visual programming by compositing pre-installed modules into

complex networks using the graphical user interface. Alternatively, the Python scripting language

can be used. Finally, C++ programmers generate individually designed modules. Furthermore, it

is possible to design user interfaces with MDL script, hiding the complexity of user-interface pro-

gramming from non-technical users. Fig 3 shows a simple MeVisLab network with a small

amount of modules: a module for loading the image data, an algorithm module, which applies a

threshold function in this example, and a viewer module for the visualization.

In summary, the MeVisLab network concept is based on a graphical representation of modules

with specific functions for image processing. MeVisLab uses three different types of modules (Fig

4). ML modules (blue) are processing modules, Open Inventor modules (green) provide scene

graphs in 3D, and Macro modules (brown) combine other modules. Module connectors located

on the bottom of the module are inputs, and connectors located at the top of the modules are out-

puts. The shape of the inputs and outputs define the connection types: A triangle for ML images,

a rectangle for a base object indicating pointers to data structures, and a half circle for an Open

Inventor scene (see Figs 3 and 4). A data transmission between connectors is enabled by a connec-

tion, visually represented by a blue line, like shown in Fig 3 on the right side. In addition to these

data connections, a parameter connection can also be established. This enables the connection of

single parameters between modules and is indicated by a two-sided arrow. For further informa-

tion, please see the MeVisLab Reference manual (last accessed in January 2017):

http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/

Publish/SDK/MeVisLabManual/index.html.

HTC Vive

This paragraph states the technical specifications of the VR headset HTC Vive, which is devel-

oped by HTC and Valve Corporation and was released in April 2016. In contrast to the current

Fig 2. 3D visualization of a patient skull with a cranial defects on the left side (left) and 3D visualization of a patient skull with a cranial

defects on the right side (right).

https://doi.org/10.1371/journal.pone.0173972.g002

HTC Vive for medical applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0173972 March 21, 2017 4 / 14

http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/MeVisLabManual/index.html
http://mevislabdownloads.mevis.de/docs/current/MeVisLab/Resources/Documentation/Publish/SDK/MeVisLabManual/index.html
https://doi.org/10.1371/journal.pone.0173972.g002
https://doi.org/10.1371/journal.pone.0173972


version of the Oculus Rift, the HTC Vive is designed to turn a room into 3D space. Two sta-

tionary reference units track the user’s head and handheld controllers, while the user is free to

walk around and manipulate virtual objects. The HTC Vive uses an organic light-emitting

diode (OLED) display and provides a combined resolution of 2160x1200 (1080x1200 per eye)

with a refresh rate of 90 Hz and a field of view (FOV) of about 110 degrees. The head mounted

display weights about 555 grams and has HDMI 1.4, DisplayPort 1.2 and USB 2.0 connections.

Fig 3. Basic module processing pipeline with a network of three modules: An image source for loading the data set into the network, an

algorithm module to process the data and a viewer module that enables the visualization of the image.

https://doi.org/10.1371/journal.pone.0173972.g003

Fig 4. Types of modules under MeVisLab: ML modules (blue) are page/-patch based and demand-driven, Open

Inventor modules (green) provide scene graphs in 3D and Macro modules (brown) consist of a combination of

modules.

https://doi.org/10.1371/journal.pone.0173972.g004
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Moreover, the HTC Vive has a 3.5 mm audio jack for headphones and a built-in microphone.

Finally, the HTC Vive has a front-facing camera for blending real-world elements into the vir-

tual world. For further information, please see the HTC Vive website (last accessed in January

2017):

https://www.htcvive.com

OpenVR

This paragraph gives a short description of OpenVR, which is a software development kit and

application programming interface developed by Valve. The C++ library supports the HTC

Vive and other VR headsets via the SteamVR software platform (http://steamvr.com). Thus,

the OpenVR API provides a way to connect and interact with VR displays without relying on a

specific hardware vendor’s SDK. OpenVR is implemented as a set of C++ interface classes

with virtual functions supposed to support also future versions of the hardware. For further

information, please see the corresponding GitHub repository (last accessed in January 2017):

https://github.com/ValveSoftware/openvr

The current OpenVR GitHub repository comes for Microsoft Windows, Linux and

MacOS. Moreover, it includes examples in C++ for Visual Studio from Microsoft.

Workflow

Fig 5 shows a high-level workflow diagram of the communication and interaction between

MeVisLab and the HTC Vive device via OpenVR. In doing so, the MeVisLab platform pro-

vides several modules to import and load medical data, e.g., in DICOM format (http://dicom.

nema.org/). The medical image data can be processed and visualized with a variety of modules

under MeVisLab. Options include the visualization in 2D and 3D, or medical image analysis

algorithms, like the segmentation of anatomical or pathological structures. Moreover, MeVi-

sLab modules that derive directly from ITK (Insight Segmentation and Registration Toolkit,

https://itk.org/) and VTK (The Visualization Toolkit, http://www.vtk.org/) can be applied.

Our new HTCVive module communicates with the HTC Vive via OpenVR. However, our

MeVisLab module may also be able to communicate with another VR device, like the Oculus

Rift (https://www.oculus.com/), because the OpenVR API provides a way to connect and

interact with VR displays without relying on a specific hardware vendor’s SDK. The HTCVive

module transfers the image date to the HMD and receives the position and the orientation of

the HMD in real-world to MeVisLab. The position and orientation enable further visualiza-

tions under MeVisLab, like rendering the user’s view in a second 3D viewer on a conventional

screen, so users without HMD can see the VR view, too. For our implementation, we followed

the hellovr_opengl source code example from OpenVR (https://github.com/ValveSoftware/

openvr/tree/master/samples/hellovr_opengl). In doing so, using an initialization method to

start the SteamVR runtime and render a distortion view of the right and left eye.

Network

Fig 6 shows the overall MeVisLab network with our HTCVive module (blue) in the lower left

surrounded by a yellow rectangle. In this example network, the (medical) data is imported

via the WEMLoad module (here named DataLoad) and directly passed via its output (rectan-

gle) to the HTCVive module (rectangle input at the bottom of the HTC Vive module). Fur-

thermore, the loaded data is passed via a WEMModify module (blue, lower right side), an

SoWEMRenderer module (green, right side in the middle) and an SoSeparator module (green,

upper right side) to another SoSeparator module (named 3DUserView at the top). The win-

dow on the right side belongs to the 3DUserView module at the top and displays what the user

HTC Vive for medical applications
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wearing the HTC Vive headset sees. Note that the HMD tracking coordinates are transferred

via direct parameter connections in our example. The remaining modules in the network

example from Fig 6 are mainly arithmetic and matrices modules to decompose (Decompose-

Matrix and DecomposeMatrix2) and compose (ComposeMatrix) the rotation and translation

for a correct visualization. The interface and parameters of our HTCVive module are shown

on the left side (Panel HTCVive). Finally, a status window of the SteamVR is presented on the

lower right corner (black), indicating that the HMD, the two HTC Vive controllers and the

two HTC Vive Lighthouse base stations are ready and running (green).

Results

The aim of this contribution was to investigate the feasibility of using the Virtual Reality device

HTC Vive under the medical prototyping platform MeVisLab. We present the direct rendering

and visualization of (medical) image data in the head mounted device using the publicly avail-

able OpenVR library. The software integration was achieved under Microsoft Windows 8.1

with MeVisLab version 2.8.1 (21-06-2016) for Visual Studio 2015 x64 (http://www.mevislab.de/

download/) and the OpenVR SDK version 1.0.2 (https://github.com/ValveSoftware/openvr).

The MeVisLab module was implemented as an image processing module in C++ using the

MeVisLab Project Wizard and the Microsoft Visual Studio 2015 Community Edition. The HTC

Vive MeVisLab module (HTCVive) has an input for the medical image data, which is trans-

ferred and displayed in the HTC Vive. Additionally, the HTCVive module provides the data at

Fig 5. High level workflow diagram that demonstrates the communication and interaction between the MeVisLab platform and the

HTC Vive device via the OpenVR library.

https://doi.org/10.1371/journal.pone.0173972.g005
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an output (rectangle) for visualization in a standard undistorted 3D view, and the module pro-

vides the HMD tracking coordinates of the HTC Vive (Fig 6, right window). Finally, an extra

window can be created for a distorted view of the virtual reality input for the left and the right

eye (Fig 7 without texture and Fig 8 with texture). For an evaluation, we tested several medical

datasets, like patient skulls with cranial defects and scans from gastrointestinal tracts for usage

in virtual colonoscopy (Fig 9). As a hardware setting, we applied two computers: a desktop PC

and a MacBook Pro laptop, which both had Windows 8.1 Enterprise installed. The hardware

Fig 6. Screenshot of the comprehensive MeVisLab network with the HTCVive module (blue, lower left corner surrounded by

a yellow rectangle) and its interface and parameters on the left side (Panel HTCVive). Additionally, the module provides the HMD

tracking coordinates of the HTC Vive, which can be used to have the same position and viewing direction as the actual user wearing the

HTC Vive in an extra 3D view (Viewer SoSeparator(3DUserView) on the right side).

https://doi.org/10.1371/journal.pone.0173972.g006

Fig 7. The distorted view of the VR input for the right and left eye without texture.

https://doi.org/10.1371/journal.pone.0173972.g007
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Fig 8. The distorted view of the VR input for the right and left eye with texture.

https://doi.org/10.1371/journal.pone.0173972.g008

Fig 9. The figure shows a scan of the gastrointestinal tract that has been imported and displayed in the HTC Vive for usage in virtual

colonoscopy.

https://doi.org/10.1371/journal.pone.0173972.g009
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configuration of the desktop PC consisted of an Intel Core i7-3770 CPU @ 3.40GHz, 16 GB

RAM and a NVIDIA GeForce GTX 970 graphics card, and the hardware configuration of the

laptop computer consisted of an Intel Core i7-4850HQ CPU @ 2.30GHz, 16 GB RAM and a

NVIDIA GeForce GT 750M graphics card. Figs 10 and 11 show the frame timing results of

both configurations for the CPU (top) and the GPU (bottom). The frame timing results come

directly from the SteamVR and can be activated and displayed via the SteamVR status window.

As seen, the default view splits the CPU and GPU performance in a pair of stacked graphs: The

blue sections represent the time spent by the application, which is further spitted between appli-

cation-scene and application-other. Application-scene is the amount of work performed in

between, when WaitGetPoses (returns pose(s) to use to render scene) returns and the second

eye texture is submitted. Application-other is any time spent after this for rendering the applica-

tion’s companion window, etc. Note that the CPU timing does not capture any parallel work

being performed, for example, on the application’s main thread. The brown section (other) in

the GPU timing reflects any GPU bubbles, context switching overhead, or GPU work from

other application getting scheduled in between other segments of work for that frame (to exam-

ine this in more detail requires the use of gpuview). For more information, please see also (last

access January 2017):

https://developer.valvesoftware.com/wiki/SteamVR/Frame_Timing.

As shown in the frame timing diagram in Fig 10, a sufficient framerate for the desktop PC

configuration could be achieved, because ten frames per second are already considered as real-

time or interactive in computer graphics applications [20]. Hence, the medical datasets could

be displayed very pleasant to the human eye inside the HTC Vive device. In contrast, the fra-

merates on the laptop were in general not sufficient, resulting in a flickering inside the HTC

Vive. For a short period of time, this is acceptable as a temporary (mobile) solution, but for a

longer working period, this is currently definitely not suitable. However, the laptop and its

Fig 10. Frame timing result diagrams of the CPU (top) and the GPU (bottom) for a Windows desktop PC with Intel Core

i7-3770 CPU @ 3.40GHz, 16 GB RAM and a NVIDIA GeForce GTX 970 graphic card.

https://doi.org/10.1371/journal.pone.0173972.g010

Fig 11. Frame timing result diagrams of the CPU (top) and the GPU (bottom) for a Windows laptop with Intel Core i7-4850HQ CPU @ 2.30GHz, 16

GB RAM and a NVIDIA GeForce GT 750M graphic card.

https://doi.org/10.1371/journal.pone.0173972.g011
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hardware is also not considered as HTC Vive ready, but we expect to see soon laptops that can

handle the HTC Vive requirements, so it can also be used as a portable application.

Discussion

In this open access article, we demonstrated the successful integration and evaluation of the

HTC Vive headset into the research prototyping platform MeVisLab via the OpenVR library.

OpenVR is a software development kit and application programming interface developed by

Valve (http://www.valvesoftware.com/) for supporting the SteamVR (HTC Vive) and other

VR headsets. Hence, our integration is device and vendor independent and can also be used

with other devices. The proposed software integration has been carried out with the C+

+ implementation of a MeVisLab image processing module that provides inputs for medical

datasets in different formats. Thus, our module is easy to use and can be added to existing

MeVisLab networks or applied in new ones. Per drag and drop, data outputs under MeVisLab

can be directly connected to an input of our module to transfer the data into the HTC Vive

headset and display it there. Furthermore, dataset operations and manipulations, like transla-

tion, rotation, segmentations, etc. that have been performed in advance with corresponding

MeVisLab modules will also directly be shown inside the headset. Highlights of the proposed

contribution are as follows:

• Successful integration of OpenVR into MeVisLab

• Solution enables MeVisLab networks to connect to VR headsets

• Real-time visualization of medical data in VR under MeVisLab

• Proof of concept evaluation with the HTC Vive headset

• HTC Vive MeVisLab module can be added to existing MeVisLab networks.

Areas of future work include the evaluation of our integration with a greater amount of

medical data and formats. Although if we did not encounter motion sickness in our tests, this

might be an issue for some users and needs to be explored systematically. In addition, we plan

a MeVisLab module communicating with the Oculus Rift head mounted display, or, as an

alternative, the extension of our VR module supporting also the Oculus Rift, when fully sup-

ported by the OpenVR library, and the evaluation on non-Windows-Setups like Linux or Mac

OS. Moreover, we work on applying our solution to support computer-aided reconstructions

of facial defects [21], [22] with photorealistic rendering in VR [23]. This will enable an even

more realistic assessment of pre-operative planning results. Furthermore, we investigate

options for performing image-guided therapy tasks inside VR, for example, the planning of

facial interventions using so called miniplates [24] and virtual stent simulations to treat aneu-

rysms [25–29]. Capturing and reconstruction of 3D models of tumors in the gastrointestinal

tract during diagnostic endoscopic procedures will ease the planning for the endoscopic

removal without the need for prolonged or repeated anesthesia [30]. Using segmentation algo-

rithms implemented in MeVisLab [31–33] will help identify areas of tumor spread in the 3D

model due to surface characteristics. Interactive segmentation [34], [35] might even be done

with the HTC Vive controllers. Additionally, reviewing 3D models of tumors in virtual space

will provide a platform for training to improve recognition of these lesions from different

angles. We would like to pursue the development of an Augmented Reality (AR) module for

MeVisLab, to support novel devices like the Microsoft HoloLens, because optical see-through

head-mounted displays seem to be very promising during surgical navigation [36]. Last but

not least, we plan to integrate OpenVR into other research platforms, like OsiriX [37], 3D
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Slicer [38] or the two Medical Imaging (Interaction) Toolkits (MITK) from Beijing in China

(www.mitk.net) [39] and Heidelberg in Germany (www.mitk.org) [40], respectively.
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