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a b s t r a c t 

Deep learning has remarkably impacted several different scientific disciplines over the last few years. 

For example, in image processing and analysis, deep learning algorithms were able to outperform other 

cutting-edge methods. Additionally, deep learning has delivered state-of-the-art results in tasks like au- 

tonomous driving, outclassing previous attempts. There are even instances where deep learning outper- 

formed humans, for example with object recognition and gaming. Deep learning is also showing vast 

potential in the medical domain. With the collection of large quantities of patient records and data, and 

a trend towards personalized treatments, there is a great need for automated and reliable processing and 

analysis of health information. Patient data is not only collected in clinical centers, like hospitals and 

private practices, but also by mobile healthcare apps or online websites. The abundance of collected pa- 

tient data and the recent growth in the deep learning field has resulted in a large increase in research 

effort s. In Q2/2020, the search engine PubMed returned already over 11,0 0 0 results for the search term 

‘deep learning’, and around 90% of these publications are from the last three years. However, even though 

PubMed represents the largest search engine in the medical field, it does not cover all medical-related 

publications. Hence, a complete overview of the field of ‘medical deep learning’ is almost impossible to 

obtain and acquiring a full overview of medical sub-fields is becoming increasingly more difficult. Never- 

theless, several review and survey articles about medical deep learning have been published within the 

last few years. They focus, in general, on specific medical scenarios, like the analysis of medical images 

containing specific pathologies. With these surveys as a foundation, the aim of this article is to provide 

the first high-level, systematic meta-review of medical deep learning surveys. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Deep learning [1] had a remarkable impact on different sci- 

entific fields during the last years. This was demonstrated in nu- 

merous tasks, where deep learning approaches were able to out- 

perform the standard methods, including image processing and 

analysis [ 2 , 3 ]. Moreover, deep learning delivers reasonable results 

in tasks that could not have been performed automatically be- 

fore, like autonomous driving [ 4 , 5 ]. There are even applications 
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where deep learning outperformed humans, like in object recog- 

nition [6] or games [ 7 , 8 ]. 

A field in which this development has begun to show huge po- 

tential is the medical domain. With the collection of large quan- 

tities of patient records and data, and a trend towards personal- 

ized treatments, there is a great need for automatic and reliable 

processing and analysis of this information [9] . Patient data is not 

only collected in clinical centers, like hospitals and private prac- 

tices, but also by mobile healthcare apps or online websites. To- 

gether this resulted in new, massive research efforts during the last 

years. In Q2 of 2020, the search engine PubMed returns already 

over 11.0 0 0 results for the search term “deep learning ”, and around 
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90% of these publications are from the last three years. However, 

even though PubMed represents the largest search engine in the 

medical domain, it does not cover all medical-related publications. 

For example, medical topics are also covered in primary venues 

for computer science research, most often conferences [ 10 , 11 ]. De- 

spite their high impact and consideration within the community, 

conference proceedings are usually not listed under PubMed, with 

only a few exceptions, like the prestigious annual conference ‘ Med- 

ical Image Computing and Computer Assisted Intervention ’ (MICCAI). 

In addition, there are rather technical, non-interdisciplinary con- 

ferences, for example in computer vision, through which very in- 

fluential research on medical applications is published [12] . These 

contributions are often overlooked by medical search engines. This 

does not relate to survey and review articles, which, due to their 

length, are generally published in peer-reviewed, PubMed-indexed 

journals. However, for this reason, it is possible for a review article 

to miss some relevant contributions. 

Taking all these considerations into account, a complete 

overview of the field of medical deep learning is almost impossible 

to obtain and acquiring a full overview of medical sub-fields be- 

comes increasingly more difficult. Nevertheless, several review and 

survey articles about medical deep learning have been published 

within the last years. They focus, in general, on specific medical 

scenarios, such as the analysis of certain medical images contain- 

ing specific pathologies, like the automatic detection of a cardio- 

vascular disorder in computed tomography angiography acquisi- 

tions [13] . In this context, the aim of this contribution is to provide 

an introductory, high-level and systematic meta-review of medi- 

cal deep learning surveys. Modeled after existing meta-reviews in 

the medical domain, such as the systematic review of systematic 

reviews of homeopathy [14] , or the survey of surveys on the use 

of visualization for interpreting machine learning models [15] in 

a technical domain. The authors are not aware of any meta-review 

in medical deep learning or general deep learning so far. Compared 

to medicine, which has a millennia-old tradition, computer science 

is a very young discipline. Nonetheless, if this discipline continues 

growing at the current pace, meta-reviews like this will become 

more and more common. 

In this publication, we present all review and survey articles 

published from 2017 to 2019 found by a systematic PubMed search 

(see Search Strategy). We did not include articles published after 

2019, since we also present the citations of the reviewed publica- 

tions. Thus, the relatively new reviews from 2020 are still ‘under- 

cited’ in comparison to the reviews from the previous years (as 

can also be seen in the decreasing number of citations for 2017: 

6089 citations, 2018: 947 citations and 2019: 408 citations), and 

one aim of this contribution is to give an overall impression of the 

impact these works have already had on their respective scientific 

fields. Table 1 gives an overview of the number of reviews pub- 

lished each year, from 2017 to 2019. Furthermore, the table shows 

the sum of the overall references and citations for each year ac- 

cording to Google Scholar (status as of August 2020). Tables 2–4 

describe the publications of each year in more detail. 

Systematic literature review phase. For our systematic review, 

we started with planning the overall structure and main headings 

of this manuscript, orienting on existing surveys and meta-surveys 

in the literature. Next, we decided on the databases and years of 

publication that we wanted to include in our meta-survey. While 

keeping in mind the overall number of publications we want to 

cover within our manuscript. Subsequently, we performed the fi- 

nal literature search (see next paragraph Search Strategy ), summa- 

rized every survey and extracted the citations, main architectures, 

evaluations, pros/cons, challenges and future directions. Finally, we 

analyzed the commonalities and drew a conclusion resulting in a 

discussion and future outlook. 

Search Strategy. For this systematic meta-review, a search in 

PubMed for the keyword ‘Deep Learning’ together with any key- 

word including {‘Review’, ‘Survey’} was performed. Based on the 

titles and abstracts, all records which were not actually review or 

survey contributions in the medical field, like [ 16 , 17 ] and [18] , or 

were not written in English, like [ 19 , 20 ], or are veterinarian re- 

views [21] , or are about a human learning strategy called Deep 

Learning [22] , were excluded (while the term “deep learning ” was 

coined by Geoffrey Hinton in terms of learning deep neural net- 

works in 2006 [ 23 , 24 ], the term seemed to have existed much ear- 

lier in educational psychology [25] . Note further, that non-shallow 

neural networks had already become an explicit research subject 

by the early 1990s, when they also became practically feasible to 

some extent through the help of unsupervised learning [26] ). This 

ultimately resulted in a total number of 43 review or survey pub- 

lications about deep learning in the medical field, which are cov- 

ered within this systematic meta-review. Summarized, this high- 

level systematic meta-review provides an overview of the pub- 

lished medical deep learning reviews and surveys in PubMed, as 

well as their references and citations (status as of August 2020). 

Note that our systematic search strategy does not cover all topics 

in medical deep learning, like a survey about uncertainty quantifi- 

cation in deep learning applications in medical data analysis [27] . 

However, we did not want to “break” our systematic meta-review 

search by adding what is arguably arbitrary additional literature. 

Manuscript Outline. The main body of this contribution 

presents exclusively reviews and surveys on medical deep learn- 

ing from a systematic PubMed search. To keep the manuscript 

concise for the reader, we provide only high-level summaries and 

excerpts, mainly form the review and survey abstracts (note that 

some of the presented reviews cover up to several hundred publi- 

cations themselves). Thus, every review or survey publication will 

be summarized in around 100 to 200 words. However, by pointing 

to the associated publications via the keyword classifications and 

chronological arrangement of the presented medical deep learn- 

ing reviews or surveys, the interested reader should be able to 

dive deeper into the specific categories and sub-categories. The rest 

of this manuscript is organized as follows: Section 2 presents the 

overview of the medical deep learning reviews and surveys divided 

into the years of publications from 2017 to 2019 in chronological 

order, beginning with the first published work in the respective 

year. The final Section 3 concludes this contribution with a discus- 

sion and outlines areas of future directions. 

Research questions. The overall aim of this systematic meta- 

review is to analyze reviews and surveys published between 2017 

and 2019 in medical deep learning. In doing so, we defined the 

following main research questions for our study: 

Table 1 

Overview of published reviews of deep learning in the medical field from beginning 2017 to end of 2019 according to 

PubMed and number of citations according to Google Scholar (status as of August 2020). 

Year � Number of publications Number of references Citations (until August 2020) 

2017 7 1060 6089 

2018 15 1684 947 

2019 21 2279 408 

Sum 43 5023 7444 
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Table 2 

List of published reviews of deep learning in the medical field in 2017 according to PubMed and number of citations according to Google 

Scholar (status as of August 2020); ordered by epub (electronic publication) date. 

Medical field/subject Publications Date (epub) � 
Number of 

references 

Citations (until 

August 2020) 

Medical image analysis (I.) Shen et al. [28] March 09, 2017 117 1232 

Healthcare Miotto et al. [29] May 06, 2017 119 624 

Medical image analysis (II.) Litjens et al. [30] Jul. 26, 2017 439 3696 

Stroke management Feng et al. [31] Sep. 27, 2017 55 40 

Analysis of molecular images in cancer Xue et al. [32] Oct. 15, 2017 60 23 

Health-record analysis Shickel et al. [33] Oct. 26, 2017 63 377 

Microscopy image analysis Xing et al. [34] Nov. 22, 2017 207 97 

Sum – 1060 6089 

Table 3 

List of published reviews of deep learning in the medical field in 2018 according to PubMed and number of citations according to Google 

Scholar (status as of August 2020); ordered by epub (electronic publication) date. 

Medical field/subject Publications Date (epub) � 
Number of 

references 

Citations (until 

August 2020) 

Toxicity of chemicals Tang et al. [35] Mar. 01, 2018 103 13 

Pulmonary nodule diagnosis Yang et al. [36] Apr. 2018 42 14 

Physiological signals Faust et al. [37] Apr. 11, 2018 166 301 

DNA sequencing Celesti et al. [38] Apr. 12, 2018 52 14 

Radiotherapy Meyer et al. [39] May 17, 2018 234 86 

Ophthalmology Grewal et al. [40] May 30, 2018 33 29 

Electronic health records Xiao et al. [41] Jun. 08, 2018 123 146 

Bioinformatics Lan et al. [42] Jun. 28, 2018 127 85 

Personalized medicine Zhang et al. [43] Aug. 07, 2018 142 8 

1-D biosignals Ganapathy et al. [44] Aug. 29, 2018 117 19 

Omics Zhang et al. [45] Sep. 26, 2018 143 40 

Sport-specific movement recognition Cust et al. [46] Oct. 11, 2018 98 35 

Diabetic retinopathy Nielsen et al. [47] Nov. 03, 2018 42 12 

Image cytometry Gupta et al. [48] Dec. 19, 2018 137 46 

Radiology Mazurowski et al. [49] Dec. 21, 2018 125 99 

Sum – 1684 947 

Table 4 

List of published reviews of deep learning in the medical field in 2019 according to PubMed and number of citations according to Google 

Scholar (status as of August 2020); ordered by epub (electronic publication) date. 

Medical field/subject Publications Date (epub) � 
Number of 

references 

Citations (until 

August 2020) 

Medical imaging Biswas et al. [50] Jan. 01, 2019 94 28 

Brain cancer classification Tandel et al. [51] Jan. 18, 2019 123 33 

Electroencephalogram Craik et al. [52] Feb. 26, 2019 123 91 

Pulmonary nodule detection Pehrson et al. [53] Mar. 07, 2019 48 21 

Neuro-oncology Shaver et al. [54] Jun. 14, 2019 81 9 

Diabetic retinopathy Asiri et al. [55] Aug. 07, 2019 138 21 

Cardiac arrhythmia Parvaneh et al. [56] Aug. 08, 2019 20 4 

Protein structure Wardah et al. [57] Aug. 12, 2019 72 7 

Electroencephalography Roy et al. [58] Aug. 14, 2019 249 101 

Neurology Valliani et al. [59] Aug. 21, 2019 83 8 

Cancer diagnosis Munir et al. [60] Aug. 23, 2019 167 20 

Ultrasound Akkus et al. [61] Sep. 03, 2019 78 7 

Radiation oncology Boldrini et al. [62] Oct. 01, 2019 64 10 

Drug–drug interaction Zhang et al. [63] Nov. 04, 2019 180 4 

Urology Suarez-Ibarrola et al. [64] Nov. 05, 2019 56 10 

Sleep apnea Mostafa et al. [65] Nov. 12, 2019 93 5 

Ophthalmic diagnosis Sengupta et al. [66] Nov. 22, 2019 123 13 

Alzheimer’s disease Ebrahimighahnavieh et al. [67] Nov. 27, 2019 201 4 

Pulmonary nodule detection Li et al. [68] Nov. 29, 2019 60 3 

Liver masses Azer [69] Dec. 15, 2019 45 5 

Pulmonary medical imaging Ma et al. [70] Dec. 16, 2019 181 4 

Sum – 2279 408 

1) What are the different applications of deep learning in 

medicine? 

2) What are the methods most frequently or successfully em- 

ployed by deep learning in medicine? 

3) What are the strengths and limitations of these methods, espe- 

cially with respect to the field they are applied to? 

4) What are the key research gaps that are being investigated or 

should be investigated according to researchers? 

2. Medical deep learning: a compact overview of reviews and 

surveys 

This section presents an overview of review and survey pub- 

lications in medical deep learning. The publications are arranged 

in three sub-sections by their year of publication, from 2017 to 

2019. Within the yearly sub-sections, the publications are arranged 

chronologically by their date of publication starting with the first 

3
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Fig. 1. Collage mapping all figures from the reviewed articles to a left hemisphere brain surface. 

published work in the corresponding year. Typically, review or sur- 

vey contributions order the reviewed publications in categories, 

like medical image classification, object detection, segmentation, 

registration, and other tasks. However, for this meta-review we de- 

cided explicitly for an order by publication date to show the histor- 

ical sequence in which they occurred to the reader. Still, the tables 

provide also a quick overview of the different categories. Hence, at 

the beginning of every section (2017, 2018 and 2019), the areas of 

the reviews are summarized in a listing, which corresponds to the 

chronical order of the publications of this year in the following de- 

scriptions. Consequently, Tables 1–4 are also divided into the years 

2017 to 2019 and chronically ordered. Note, that the reviewed sur- 

veys can focus on a specific subject, like the survey about diabetic 

retinopathy screening, or span over a general field, like the survey 

about healthcare. Moreover, the tables present the number of refer- 

enced works and the current citations for every year and publica- 

tion according to Google Scholar, which reveals an overall number 

of 5023 referenced works in the proposed reviews, and an over- 

all number of 74 4 4 citations for the reviews themselves (status as 

of August 2020). Furthermore, Fig. 1 shows a collage, where we 

mapped all figures of the reviewed articles to the surface of the 

left hemisphere of the brain. Finally, and equivalent to [37] , Fig. 2 

shows a network visualization for the review articles supplied key- 

words from 2017 to 2019. More specifically, the figure shows the 

co-occurrence network and the topic clusters for the article key- 

words, and it reveals the two main clusters, namely “humans”

and “deep learning”, and their connections. Further main clusters 

center around the keywords “machine learning”, “neural networks 

(computer)” and “algorithms”. Overall, the clusters and connections 

show how the medical domain has been affected by deep learning 

in these years, covering a broad range of topics and applications. 

2.1. Medical deep learning reviews in 2017 

With the described search strategy, seven medical deep learn- 

ing surveys published in 2017 were discovered. Fig. 3 shows a net- 

work visualization of the review article keywords from 2017 re- 

vealing the keyword “humans” with its connections as the main 

cluster. Further main keyword clusters are “deep learning” and 

“neural networks (computer)”, which also reveal the main com- 

monalities and trends for the surveys in 2017. More specific topics 

in the surveys of 2017 are “electronic health records” and “diag- 

nostic imaging”. The reaming clusters are of a more general na- 

ture, like “machine learning”, “algorithms” and “image processing”. 

The presented reviews from 2017 cite 1060 contributions and have 

been cited 6089 times (status as of August 2020). They cover the 

following categories and are ordered by epub (electronic publica- 

tion) date in 2017 (see Table 2 ): 

– Medical image analysis (I.); 

– Healthcare; 

– Medical image analysis (II.); 

– Stroke management; 

– Analysis of molecular images in cancer; 

– Health-record analysis; 

– Microscopy image analysis. 

Medical image analysis (I.) – The aim of medical image analy- 

sis is to automatically or semi-automatically extract information 

from patient data. For instance, this could be an automatic de- 

termination of the tumor volume from a patient’s magnetic res- 

onance imaging (MRI) scan with the aim to choose the appropri- 

ate therapy strategy. Shen et al. [28] introduce in their publication 

the basics of deep learning-based approaches and survey their suc- 

4 
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Fig. 2. Network visualization for the review articles supplied keywords from 2017 to 2019 performed with VOSviewer. 

Fig. 3. Network visualization for the review articles supplied keywords in 2017 performed with VOSviewer. 

cess in fields like image registration, tissue segmentation, anatomi- 

cal/cell structures detection, computer-aided disease diagnosis, but 

also computer-aided disease prognosis. They conclude their work 

by pointing out remaining research challenges and give suggestions 

for future research directions that could advance medical image 

analysis. 

Healthcare – The umbrella term healthcare envelopes the main- 

tenance and advancement of people’s health by diagnosis, preven- 

tion, treatment, but also recovery or even cure of illness, disease, 

injury, or any further physical or mental maladies. In that con- 

text, the survey article of Miotto et al. [29] , reviews published re- 

search using deep learning-based approaches and technologies to 

improve the healthcare field. Centered on the analyzed publica- 

tions, they conclude and propose that deep learning-based meth- 

ods can be used to advance human health by exploring and ex- 

ploiting big biomedical data. Furthermore, they depict limitations 

and the need for improved methods and applications and discuss 

future challenges in this area. 

Medical image analysis (II.) – The publication of Litjens et al. 

[30] surveys the main deep learning-based concepts that are rel- 

evant for the area of medical image analysis. They summarize over 

300 works within the area and analyze the usage of deep learning- 

based methods for object detection, image classification, segmen- 

tation, but also registration and further tasks. Moreover, they give 

compact, categorized outlines of studies in different areas of appli- 

cation, namely digital pathology, neurological, pulmonary, retinal, 

breast, as well as abdominal, cardiac, and musculoskeletal imag- 

ing. Finally, they give a summary of the current works at that time 

and discuss the remaining research questions and directions for 

upcoming research contributions. 

Stroke management – Stroke can cause a long-term disability 

and a vast amount of research has been focused on using neu- 

roimaging to explore regions of ischemia, which have not been 

affected by cellular death. In this context, Feng et al. [31] re- 

view clinical applications for deep learning-guided stroke manage- 

ment. They identify the following core topics for translating deep 

learning-based methods in the management of strokes, namely im- 

age segmentation, multimodal prognostication, but also radiomics 

(automated featurization). 

Analysis of molecular images in cancer – Molecular imaging is of 

major interest for early cancer detection, because it opens the pos- 

sibility to visualize biological changes on a molecular, but also on a 

5 
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cellular level, which enables a quantitative analysis of them. Hence, 

Xue et al. [32] published a survey about deep learning-based ap- 

plications for an automated analysis of molecular cancer image ac- 

quisitions. They survey the deep learning-based applications in the 

field of molecular imaging with regards to a segmentation of tu- 

mor lesions, classification of tumors, and a prediction of patient 

survival. 

Health-record analysis – Health-record analysis explores the dig- 

ital information stored in electronic health databases. The initial 

intention for storing information of patients are administrative 

tasks in healthcare, such as billing. However, subsequently health 

records also became interesting for numerous applications in clin- 

ical informatics for researchers. Hence, Shickel et al. [33] perform 

a review about deep learning-based research for clinical applica- 

tions that depend on the analysis of health-record data. They ex- 

plore numerous deep learning-based frameworks and techniques 

that have been used for various clinical tasks; for example, in- 

formation extraction, representation learning, outcome prediction, 

phenotyping, and de-identification. The authors discovered several 

remaining research challenges, such as heterogeneity of data, the 

lack of available universal benchmark tests, and the interpretability 

of models. They finalize their analysis by recapitulating the recent 

works, as well as pointing out directions that could be upcom- 

ing research topics in deep learning-based processing of health- 

records. 

Microscopy image analysis – Microscopy images are images ac- 

quired from a microscope that can be utilized for the characteri- 

zation of various diseases, such as brain tumors, breast cancer or 

lung cancer. Xing et al. [34] explore the image analysis domain for 

medical microscopy by providing at first a dense overview of com- 

mon deep neural networks. Then, they analyze and review state- 

of-the-art results of deep learning in the analysis of microscopy 

images, for example in the tasks of image segmentation, object de- 

tection and classification. The authors also describe several archi- 

tectures in deep learning, namely convolutional and fully convo- 

lutional neural networks, but also deep belief and recurrent neu- 

ral networks, and lastly, stacked autoencoders. Thereby, they in- 

vestigate and depict the specific network structures for the dif- 

ferent applications in the analysis of microscopy images. The au- 

thors end their review by outlining remaining research needs, and 

by highlighting possible research directions in the domain of deep 

learning-based processing of microscopy images. 

2.1.1. Diving deeper: architectures, evaluations, pros, cons, challenges 

and future directions in 2017 

Table 5 presents more details about the presented methods, 

pros, cons, evaluations, challenges and future directions for the re- 

views from the year 2017. All reported surveys share a number of 

important conclusions. They agree that deep learning is a promis- 

ing approach for a wide variety of medical fields and tasks and 

predict that it will find increasing use in diagnosis, predictions, de- 

cision making and task automation. The deep learning-based meth- 

ods explored by the respective surveys typically outperform previ- 

ous state-of-the-art algorithms based on more naive approaches. 

In addition, the authors of the surveys all share the opinion that 

several challenges remain unsolved so far and will require addi- 

tional exploration in the future. Among those are the inherently 

low explainability of deep learning approaches (often termed the 

“black box” problem) and lack of structured and expert-labeled 

or -annotated data, suggesting the creation of large-scale public 

datasets. 

2.2. Medical deep learning reviews in 2018 

With the proposed search strategy, 15 surveys were identified 

in medical deep learning from 2018. Fig. 4 shows a network visu- 

alization for the review articles supplied keywords in 2018 that re- 

veals, equivalent to the surveys from 2017, the keywords “humans”

and “deep learning”, and its connections, as the main clusters. 

Further main keyword clusters center around the more general 

keywords “machine learning”, “neural networks (computer)” and 

“algorithms”. However, the smaller clusters around the keywords 

“electrocardiography”, “computational biology”, “surveys and ques- 

tionnaires”, “genomics” and “animals”, show that the works in 

medical deep learning broadened in 2018 compared to 2017. The 

proposed reviews from 2018 themselves refer to 1684 contribu- 

tions and have been cited 947 times (status as of August 2020). 

They cover the following categories, ordered by epub date in 2018 

( Table 3 ): 

– Toxicity of chemicals; 

– Pulmonary nodule diagnosis; 

– Physiological signals; 

– DNA sequencing; 

– Radiotherapy; 

– Ophthalmology; 

– Electronic health records; 

– Bioinformatics; 

– Personalized medicine; 

– 1-D biosignals; 

– Omics; 

– Sport-specific movement recognition; 

– Diabetic retinopathy; 

– Image cytometry; 

– Radiology. 

Toxicity of chemicals – Toxicity testing and evaluation of chem- 

icals is important for humans and animals, because they are ex- 

posed lifelong to natural and synthetic chemicals. Tang et al. 

[35] analyze in their work how deep learning-based tools can be a 

utilized for toxicity prediction, by building models for quantitative 

structure-activity relationships. They focus on large datasets, where 

classic data analysis techniques cannot deliver fast results. First, a 

technical overview about deep neural networks is provided by the 

authors. Then, recent works for the prediction of chemical toxicity 

models based on deep neural network approaches are explored. Fi- 

nally, the important data sources for toxicity are outlined, remain- 

ing challenges are highlighted, and future directions for deep neu- 

ral network-based approaches for the prediction of chemical toxic- 

ity are provided. 

Pulmonary nodule diagnosis – A pulmonary nodule is a small, 

rounded opacity within the pulmonary interstitium. In their re- 

view, Yang et al. [36] present deep learning works that aid 

the decision-making in pulmonary nodule diagnosis. The deep 

learning-based methods they survey focus on computer-assisted 

feature extraction, false-positive reduction and nodule detection, 

but also on a benign-malignant classification in large volume scans 

of the chest. 

Physiological signals – Physiological signals are signals from 

psycho-physiological measurements. In their survey, Faust et al. 

[37] review deep learning-based approaches utilized in healthcare 

applications that exploit physiological signals. Their bibliometric 

review revealed that the analyzed contributions focused mainly 

on Electromyograms (EMGs), Electroencephalograms (EEGs), Elec- 

trocardiograms (ECGs) and Electrooculograms (EOGs). Hence, they 

used these four categories to structure the content of their survey. 

DNA sequencing – Deoxyribonucleic acid (DNA) sequencing is 

the determination procedure to reveal the order of nucleotides in 

DNA. Celesti et al. [38] review deep learning-based approaches to 

accelerate the process of DNA sequencing, given that huge amount 

of genomics data is emerging from next-generation sequencing 

(NGS) techniques. They provide a taxonomic analysis, by outlining 

the main deep learning-based NGS tools and software, and discuss 
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Table 5 

Methods, pros, cons, challenges and future directions in medical deep learning in 2017. 

Publication Methods Pros Cons Challenges Future Directions 

Medical image 

analysis I ∗

Shen et al. [28] 

CNN, DBM, 

DBN, SAE 

-DL can learn features 

through labeled data itself 

-Can be used experts 

outside of the medical 

domain 

-Overfitting due to limited 

training samples 

-Image features learnt by 

deep learning are difficult 

to understand and 

interpret 

-Build medical equivalent of 

ImageNET 

-Incorporate domain-specific 

knowledge in design/training 

-Develop a universal algorithm 

compatible with various imaging 

modalities and protocols 

Healthcare 

Miotto et al. [29] 

AE, CNN, 

RBM, RNN 

-DL can model, represent 

and learn from 

heterogenous EHR 

-Neural networks need 

improvement in 

interpretability, data 

integration, and security 

-Low data volume 

-Data heterogeneity 

-Low interpretability 

-Domain complexity 

-Disease temporality 

-Use of federated learning, 

explainable AI 

-Modeling temporality 

-Include expert knowledge into 

modeling 

-Preserve privacy 

-upscale and standardize EHR 

Medical image 

analysis II ∗

Litjens et al. [30] 

AE, CNN, 

DBN, GAN, 

RBM, SAE, 

VAE 

-End to end training (CNN) 

-Freely available 

pre-trained deep learning 

models 

-Hyper-parameter tuning 

is empirical 

-Subjective medical image 

annotation is susceptible 

variability and uncertainty 

-Medical image annotation 

is time consuming and 

expensive 

-Task-specific pre-processing and 

data augmentation techniques 

-Incorporate prior knowledge of 

the specific domain into training 

-Radiological reports could be 

used to annotate medical images 

-Leverage non-expert annotation 

through crowd-sourcing 

-Unsupervised learning using 

unlabeled data 

-Interpretable DL 

Stroke 

Management 

Feng et al. [31] 

CNN, DNN -Can apply automated 

featurization, image 

segmentation, multi-model 

prognostication, CAD 

-Neural networks need 

improvement 

-DL requires substantial 

programming skills 

-Data scarcity 

-DL will increasingly become a 

personalized medicine tool for 

stroke specialists due to its speed, 

power and versatility 

Analysis of 

molecular images 

in cancer 

Xue et al. [32] 

AE, CNN, 

DNN, SAE 

-Improved speed and 

performance in tumor 

segmentation, 

classification, and survival 

prediction 

-CNN may overfit 

-CNNs have time 

consuming training, 

challenging with low data 

-Insufficient and 

imbalanced datasets 

-Subjective model depth, 

architecture and 

hyperparameters 

-Abstract high-level 

features 

-Self-supervised approaches can 

solve the annotation problem and 

make larger datasets usable 

-Explore model optimization and 

explainability 

-Establish larger-scale public 

datasets 

Health Record 

Analysis 

Shickel et al. [33] 

AE, CNN. 

MLP, RBM, 

RNN 

-LSTM, RNNs, and variant 

can process sequential 

data 

-Lack of transparency and 

interpretability 

-Heterogenous data 

-Lack of reproducibility 

and universal benchmarks 

-Include robust mechanisms to 

handle EHR irregularity 

-Focus NLP on the clinical notes 

-Unify the representation of 

various types of patients’ data 

-Patient deidentification using DL 

-Increase interpretability 

Microscopy image 

analysis 

Xing et al. [34] 

CNN, FCN, 

RNN, SAE 

-Unsupervised training 

(SAE) 

-Unfixed input size (FCN) 

-easily parallelized 

training (CNN) 

-Obtaining large number 

of annotated microscopy 

images is expensive 

-NN requires a fixed input 

size 

-Low interpretability 

-Processing high volumes 

of medical data require 

computational acceleration 

-Develop DL methods for WSI 

analysis 

-Use a patch-based strategy to 

reduce computational expenses 

-Fusing different types of patients’ 

data 

-Design task-specific DL 

architecture based on domain 

knowledge 

-Develop unsupervised or 

semi-supervised learning 

algorithms 

Abbreviations: AE: auto-encoder, CAD: computer-assisted diagnosis, CNN: convolutional neural network, DBM: deep Boltzmann machine, DBN: deep belief network, DL: deep 

learning, DNN: deep neural network, EHR: electronic health record, FCN: fully convolutional network, GAN: generative adversarial network, MLP: multilayer perceptron, 

NLP: natural language processing, LSTM: long short-term memory, RBM: restricted Boltzmann machine, RNN: recurrent neural network, SAE: stacked auto-encoder, VAE: 

variational auto-encoder, WSI: whole slide imaging. ∗Also discussed in [74] . 

remaining research questions with a special focus on cloud com- 

puting. 

Radiotherapy – Radiotherapy (or radiation therapy) utilizes ion- 

izing radiation to control or kill malignant cancer cells. There- 

fore, treatment planning and delivery is complex and may be fa- 

cilitated and partially automated by artificial intelligence. In their 

review, Meyer et al. [39] start explaining the fundamentals of 

deep learning-based techniques by relating them to the wider 

machine learning field. They give an overview of main network 

architectures, with special attention to convolutional neural net- 

works. Afterwards, they analyze and summarize deep learning- 

based works for radiotherapy applications by classifying them into 

seven unique categories that are related to the workflow of the 

patient. 

Ophthalmology – The diagnosis and treatment of eye dis- 

orders in medicine is called ophthalmology. In their review, 

Grewal et al. [40] explore deep learning as a new technology 

for ophthalmology with various possible applications. They ex- 

plore deep learning-based methods that have been utilized in 

various diagnostic modalities, such as digital photographs, visual 

fields, and optical coherence tomography. They identify appli- 

cations in the evaluation of numerous diseases, like cataracts, 

age-related macular degeneration, glaucoma, and diabetic 

retinopathy. 
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Fig. 4. Network visualization for the review articles supplied keywords in 2018 performed with VOSviewer. 

Electronic health records – Electronic health records (EHR) sum- 

marize the data that is routinely collected from millions of patients 

across diverse healthcare centers, including information about pa- 

tient demographics, diagnoses, medication prescriptions, clinical 

notes, laboratory test results, and medical images. Xiao et al. 

[41] performed a systematic analysis of deep learning-based mod- 

els for exploring such EHR data by outlining them in regards to the 

kind of analytics task they perform and the kind of deep learning- 

based model architecture they use. They also depict the specific 

challenges resulting from such health data and tasks, and discuss 

potential solutions, as well as strategies for an evaluation in this 

field. 

Bioinformatics – Bioinformatics is an interdisciplinary field de- 

veloping approaches and software tools for the understanding of 

biological data with a strong focus on large and complex datasets. 

Lan et al. [42] survey research works combining deep learning- 

based methods with data mining, aiming to explore particular 

knowledge of the bioinformatics domain. The survey work gives 

a summary of several conventional algorithms in the data mining 

field that have been utilized for different tasks, like pre-processing, 

clustering and classification, but also of optimized neural network- 

based architectures and deep learning-based approaches. Finally, 

they outline the advantages and disadvantages in practical appli- 

cations and discuss and compare them in terms of their industrial 

usage. 

Personalized medicine – The aim of personalized medicine is to 

provide tailored patient-specific medical treatments via the identi- 

fication of common features, like their inheritance, genetics and so 

on. Zhang et al. [43] provide a research outline concerning learn- 

ing algorithms and methods, and their application, with an empha- 

sis on deep learning-based approaches for personalized medicine. 

They explore three main application domains by giving insights 

into their pros and cons, namely disease characteristic identifica- 

tion, drug development, and a prediction of the therapeutic effect. 

They conclude that the analyzed learning algorithms and methods 

cannot be seen as a general solution for all kinds of medical prob- 

lems. 

1-D biosignals – Biosignals are electrical, thermal, mechanical or 

other signals measured over time, coming from the human body or 

other organic tissues, for example an ECG measures electrical ac- 

tivity originating from the heart muscle. Ganapathy et al. [44] sur- 

vey deep learning approaches for 1-D biosignals in the field of 

computer-aided diagnosis. Further, they aim to establish a taxon- 

omy to categorize the increasing number of applications in that 

area. The deep learning-based models were arranged according to 

the origin, type and dimension of the biosignal, the application 

goal, type and size of the ground truth data, type and schedule 

of network learning, and the overall model topology. 

Omics – The emergence of big data has also involved the field of 

omics, including genomics, transcriptomics and proteomics. Zhang 

et al. [45] aim to give an entry-level overview, to understand the 

usage of deep learning approaches and methods for tackling prob- 

lems and challenges in the omics domain. They outline and dis- 

cuss various deep learning-based techniques that have fused deep 

learning with omics. Furthermore, they explore deep learning- 

based open-source frameworks with regard to their performances 

and features, but also highlight upcoming challenges and chances. 

Sport-specific movement recognition – Sport-specific movement 

recognition can be utilized for the objective performance analysis 

of an (elite) athlete. In that regard, Cust et al. [46] explore the au- 

tomated recognition and characterization of movements in sports, 

which can provide an alternative for an otherwise manual, time- 

consuming, limited performance analysis. The authors perform a 

systematical literature analysis on machine learning- and deep 

learning-based approaches for movement recognition in sports de- 

pending on input data from computer vision and inertial measure- 

ment units. They conclude that the experiment set-up, data pre- 

processing, and method development need to be considered and 

adjusted in accordance with the specific characteristics of the ex- 

amined (sport) movements to achieve good results. 
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Diabetic retinopathy – Diabetes is on the rise worldwide and the 

most frequent microvascular complication is diabetic retinopathy, 

which can lead to visual impairment or even blindness. Nielsen 

et al. [47] performed a systematic review of deep learning tech- 

niques used for diabetic retinopathy screening. They explore works 

utilizing deep learning-based approaches for the classification of 

full-scale diabetic retinopathy, using retinal fundus images from di- 

abetes patients. However, they only include works, which used a 

grading scale for diabetic retinopathy, a deep learning performance 

score, and have been compared to a reference standard from a hu- 

man grader. 

Image cytometry – Cytometry is the measurement of cell char- 

acteristics, like the cell size, cell count, cell morphology, cell cycle 

phase and DNA content. Gupta et al. [48] review how deep learn- 

ing has been used to analyze microscopy image data of tissue sam- 

ples and cells. They begin with an overview of neural networks and 

deep learning. They outline requirements for the input data, com- 

putational resources, and limitations and challenges in published 

works on deep learning in image cytometry, as well as identify 

methods that have not yet been used for cytometry data for po- 

tential future work. 

Radiology – Radiology is the medical field of extracting useful 

information from images, like computed tomography (CT) or MRI, 

for diagnosis and treatment of humans and animals. In their re- 

view, Mazurowski et al. [49] give an introduction about the field 

of radiology and outline open research questions that could be 

tackled with deep learning techniques. They further provide an 

overview of basic deep learning concepts, such as convolutional 

neural networks. Next, they outline deep learning-based research 

contributions published within the radiology discipline. Thereby, 

they organize the reviewed works by the specific type of tasks they 

aim to support. They conclude their work by discussing remaining 

problems, but also highlight opportunities for using deep learning- 

based approaches within the practice of radiology. 

2.2.1. Diving deeper: architectures, evaluations, pros, cons, challenges 

and future directions in 2018 

Table 6 presents more details about the presented methods, 

pros, cons, evaluations and challenges and future directions for 

the reviews from the year 2018. Again, all the reported reviews 

share several important conclusions. Deep learning methods out- 

perform machine learning methods over a wide variety of sub- 

jects, tasks, and datasets. All reviews predict an increase in (and 

increasing importance) of deep learning-assisted research and, at 

some future junction, practical applications. Most deep learning 

methods covered in the individual papers were CNNs and the re- 

view authors specifically cite CNNs as yielding impressive auto- 

matically extracted features and performances. The same general 

issues that were already reported in 2017, such as lack of inter- 

pretability and high-quality dataset availability, are reported again. 

Lastly, while generally considered promising, deep learning meth- 

ods at this point have not been integrated into practical workflows. 

2.3. Medical deep learning reviews in 2019 

With the proposed search strategy, 21 surveys were identified 

in the area of medical deep learning in 2019. Fig. 5 shows a net- 

work visualization for the review articles supplied keywords in 

2019 that reveals the keyword “deep learning” and its connec- 

tions as the main cluster. Further main keyword clusters are “hu- 

mans”, “machine learning”, and “artificial intelligence”. New clus- 

ters arise around the keywords “brain” and “brain-computer in- 

terfaces”, which shows that this organ has been heavily targeted 

by the research community in 2019. Also interesting is the clus- 

ter around “convolutional neural network”, which shows that CNN 

gained momentum in the medical domain by 2019. The proposed 

reviews from 2019 refer to 2279 contributions and have already 

been cited 408 times (status as of August 2020). They are or- 

dered by epub date in 2019 ( Table 4 ) and cover the following 

categories: 

– Medical imaging; 

– Brain cancer classification; 

– Electroencephalogram; 

– Pulmonary nodule detection; 

– Neuro-oncology; 

– Diabetic retinopathy; 

– Cardiac arrhythmia; 

– Protein structure; 

– Electroencephalography; 

– Neurology; 

– Cancer diagnosis; 

– Ultrasound; 

– Radiation oncology; 

– Drug-drug interaction; 

– Urology; 

– Sleep apnea; 

– Ophthalmic diagnosis; 

– Alzheimer’s disease; 

– Pulmonary nodule detection; 

– Liver masses; 

– Pulmonary medical imaging. 

Medical imaging – Medical imaging covers the field of produc- 

ing visual representations of the internal body, for example using 

computed tomography, magnetic resonance imaging or ultrasound, 

just to name a few. Biswas et al. [50] explore various types of deep 

learning systems available, with a focus on current deep learning- 

based applications in medical imaging. They also outline the tran- 

sition of technology from machine learning to deep learning and 

provide a complexity analysis and potential advantages for devel- 

opers and users. 

Brain cancer classification – In general, brain tumors are clas- 

sified into several types, depending on whether they are, for ex- 

ample, benign or malignant, which helps to choose an optimal 

treatment for the patient. Tandel et al. [51] review machine learn- 

ing and deep learning-based methods in the field of brain cancer, 

with a focus on pathophysiology. They include a review of imaging 

modalities and automatic, computer assisted methods for the char- 

acterization of brain cancer. Moreover, they outline the analysis of 

connections between cancer in the brain and additional brain dis- 

orders, such as Alzheimer’s disease, Wilson’s disease, Parkinson’s 

disease, stroke, leukoaraiosis, and further neurological disorders. 

Electroencephalogram – In the field of neuroscience, EEG analy- 

sis is an important technique with applications not only in neuro- 

science, but also neural engineering, like brain-computer interfaces 

(BCIs). Craik et al. [52] perform a systematic review on deep learn- 

ing applications for EEG classification, addressing several questions, 

including specifiying specific EEG tasks. They analyze the studies 

based on several categories, like preprocessing algorithms for EEG, 

the kind of input, and the type of deep neural network architec- 

ture. The deep learning tasks were divided into five groups, namely 

the mental workload, emotion recognition, seizure detection, mo- 

tor imagery, event related potential detection, and sleep scoring. 

For every kind of task, they outline the specific formulation of the 

input, classifier recommendations, and other major important char- 

acteristics. 

Pulmonary nodule detection – Pehrson et al. [53] systematically 

reviewed the deep learning or machine learning-based methods 

used for the automatic detection of pulmonary nodules using a 

common dataset, the Lung Image Database Consortium and Image 

Database Resource Initiative (LIDC-IDRI) database. They divide the 

works into two subcategories based on their overall architecture. 
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Table 6 

Methods, pros, cons, challenges and future directions in medical deep learning in 2018. 

Publication Methods Pros Cons Challenges Future directions 

Toxicity of 

chemicals 

Tang et al. [35] 

DNN -DNNs outperform ML in 

prediction of epoxidation, quinone 

formation, metabolite reactivity, 

classification of toxicity effects, 

and chemical-target interaction 

prediction 

-Overfitting in DNNs 

-DNN underperformance 

with small quantities of 

training data 

-Imbalanced, 

inhomogeneous, small 

datasets 

-Necessity of long training 

times and large 

computational resources 

-Creation and curation of 

larger, public datasets by 

combining datasets from 

published works, patents 

and the web 

Pulmonary nodule 

diagnosis 

Yang et al. [36] 

AE, CNN, 

DBN, 

MTANN, 

SDAE 

-Inclusion of CAD, feature 

extraction and benign-malignant 

classification 

-CNNs outperform SVMs and 

handcrafted rule-based algorithms 

-Large amounts of data are 

required for successful 

training 

-To facilitate DL, large 

datasets must be set up 

using time-consuming and 

unreliable manual labeling 

-DL for decision support in 

pulmonary nodule 

diagnosis and classification 

-Alleviate the burden of 

dataset labeling with 

reinforcement learning 

-Create public datasets 

similar to ImageNet 

-Multi-scale patches 

during training to bridge 

data gap 

Physiological 

signals 

Faust et al. [37] 

AE, CNN, 

DBN, DNN, 

KNN, LSTM, 

RBM, RNN, 

SDAE, SVM 

-Eliminates tedious and 

error-prone manual feature 

selection 

-Successful applications include 

state predictions, classifications 

and signal decoding. 

-Time consuming 

-Model architecture and 

hyperparameters decided 

without statistical 

evaluation 

-Failure to capture 

information in a 

generalizable way for 

chaotic signals 

-Long training times 

-Need for large training 

sets 

-Testing DL applications in 

practical settings 

DNA sequencing 

Celesti et al. [38] 

AE, CNN, 

DNN, 

HMM, 

MLFF, RNN 

-Integrated into software for gene 

expression analysis, genome 

analysis, SNP research, and early 

cancer detection 

-Computational efficiency and best 

performance/generalization 

-Not discussed -Most existing NGS library 

preparation devices, 

sequencing instruments, 

and software tools have 

not been designed to work 

in a clinical networked 

environment 

-DL for comparative 

genomics, forensic biology, 

biological systematic field, 

virology) 

-Cloud computing services 

will provide scalability and 

data sharing possibilities 

Radiotherapy ∗

Meyer et al. [39] 

AE, CNN, 

DNN, RNN 

-Availability of large amount of 

training data 

-Increasing power of GPUs 

-DL theories are 

empirically and 

experimentally obtained 

-Small noise, 

imperceptible to humans, 

could alter the output 

completely 

-Building coherent, large 

and balanced medical 

datasets that represent 

real-world scenarios 

-Difficulty of interpretation 

-Not discussed 

Ophthalmology 

Grewal et al. [40] 

CNN, 

others 

unnamed 

-DL has superior performance 

compared to older automated 

methods 

-Successful application for early 

diagnosis of age-related macular 

degeneration, diabetic retinopathy, 

glaucoma 

-Difficulty conveying 

quantitative results (such 

as disease severity) 

-Overfitting on 

uncorrelated features, 

noise, or dataset-inherent 

biases 

-Overinterpreting results 

from neural networks 

-Variability in dataset 

labels, and medical 

definitions 

-Retinal photography with 

smartphones and DL deep 

learning could enable 

self-ophthalmology and 

diagnoses 

-Integrate DL in the 

ophthalmologic routine 

Electronic health 

records 

Xiao et al. [41] 

AE, CNN, 

GAN, GRU, 

LSTM, RNN, 

UE 

-DL: better performance and less 

manual feature engineering 

required 

-Availability of large and complex 

datasets in healthcare for training 

-Successfully applied to clinical 

event prediction, disease 

classification, phenotyping, text 

labeling, generating continuous 

medical time series 

-Lack of interpretability -Temporality and 

irregularity of EHR data 

with lack of labels and 

multi-modality 

-Lack of generalization 

-Interpretable and 

transparent model creation 

and data curation 

Bioinformatics ∗

Lan et al. [42] 

CNN, DBN, 

decision 

tree, DNN 

clustering, 

NB, KNN, 

RNN, SAE, 

SVM 

-DL can learn knowledge from 

massive amount of data 

automatically 

-DL requires large datasets 

for training 

-Dependent on high-end 

hardware 

-Lack of interpretability 

-Data imbalance is 

prevalent in the medical 

domain 

-Aggregate different ML 

algorithms 

-Fuse data from different 

modalities 

-Develop semi-supervised 

and reinforcement 

learning algorithms 

Personalized 

medicine 

Zhang et al. [43] 

ANN, 

Bayesian 

networks, 

CNN, DBN, 

DNN, linear 

regression, 

MLP, RF, 

SDAE, SVM 

-More modern DNNs and CNNs 

outperformed older algorithms 

-Scale more efficiently with 

increasing dataset complexity 

-Feature recognition and structural 

association in structured data 

-Successfully applied for drug 

development, disease 

characteristics and therapeutic 

effects 

-Have not been applied to 

large scale datasets 

-Human intervention is 

required to extract new 

knowledge and for safe 

action 

-Dataset limited 

availability, uncertainty, 

idiosyncrasy, size 

-Lack of reproducibility 

overfitting, computational 

complexity 

-Data privacy, lack of 

clinical approval, 

intellectual property 

rights, genetic correlation 

validation 

-Upgrade clinical data and 

integration of already 

developed algorithms 

-Develop more reliable 

automated feature 

selection 

-Field growth 

( continued on next page ) 
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Table 6 ( continued ) 

Publication Methods Pros Cons Challenges Future directions 

1-D biosignals 

Ganapathy et al. 

[44] 

AE, ANN, 

CNN, DBN, 

DNN, RBM, 

RNN 

-Non-linearity and complexity 

handled well 

-Good performance even with 

multi-modal or complex data 

-Successfully applied to 

enhancement, detection, 

clustering, diagnostics, and 

prediction. 

-Weaknesses not explicitly 

covered, only the inherent 

challenges 

-Small and complex 

datasets, device specificity, 

noise 

-Real-time requirements 

for clinical applications 

-Missing ground truths 

-Increase standardization 

of network topology and 

parameters 

Omics 

Zhang et al. [45] 

CNN, DBN, 

DNN, GRU, 

LSTM, MLP, 

RBM, RNN, 

SAE 

-Successfully applied to DNA, RNA, 

protein structure analysis, gene 

expression regulation analysis, 

disease prediction, protein 

function analysis 

-CNNs can analyze spatial 

information in images 

-RNNs can analyze correlated 

features and time-series 

-DNNs are highly adaptable to 

almost all types of data 

-Older RNNs are unstable 

during training 

-Data cleaning is 

time-consuming and 

labor-intensive 

-More training data, 

computations resources, 

and higher data quality 

required 

-Lack of interpretability 

-Model selection and 

parameter tuning 

-Increasing relevance of 

reinforcement learning, 

incremental learning, and 

transfer learning 

-Mitigation techniques for 

the disadvantages of DL 

methods will continually 

be developed 

Sport-specific 

movement 

recognition 

Cust et al. [46] 

CNN, DTW, 

KNN, LSTM, 

MLP, HMM, 

NB, RF, 

SVM 

-DL outperforms other ML 

methods in performance and 

computational efficiency 

-Does not rely on heuristic 

features 

-Not discussed -Lack of uniformity in data 

acquisition 

-Fusion of IMU and vision 

data in models 

Diabetic 

Retinopathy 

Nielsen et al. [47] 

CNN, DNN -Reduced manpower due to 

automation, cost of screening, and 

issues relating to interrater 

reliability 

-Lack of trust due to 

“black box” nature 

-Risk of bias towards 

favorable results due to 

exclusion of difficult 

images from datasets 

-Lack of interpretability 

-Overcome challenges with 

prediction uncertainty, 

quality control and lack of 

interpretability 

Image cytometry 

Gupta et al. [48] 

AE, CNN, 

DNN, GAN, 

MLP, RNN 

-Features are generated 

independently and automatically 

-Use of “transfer learning”

-Successful application areas 

covered all modalities, tasks and 

scales 

-Require large amounts of 

annotated data 

-Lack of interpretability 

-Overfitting and 

underfitting 

-Requires computational 

resources and 

programming expertise 

-Class imbalances can 

impede the generalization 

ability 

-Lack of interpretability 

-Combine hand-crafted 

features and neural 

network analysis for 

strong, grounded results 

Radiology ∗

Mazurowski et al. 

[49] 

ANN, CNN -Effective in medical image 

classification, segmentation, 

detection, reconstruction and 

registration 

-DL only outperformed 

human experts in a 

minority of radiological 

tasks 

-Introducing DL into 

clinical practice will cause 

legal and ethical issues 

-Datasets are smaller and 

often imbalanced, leading 

to suboptimal training 

-Proper clinical validation 

is often overlooked 

-Optimally incorporate DL 

in existing radiology 

workflow 

Abbreviations: AE: auto-encoder, ANN: artificial neural network, CAD: computer-assisted diagnosis, CNN: convolutional neural network, DBN: deep belief network, DL: deep 

learning, DNN: deep neural network, GAN: generational adversarial networks, GPU: graphic processing unit, GRU: gated recurrent units, HMM: hidden Markov model, IMU: 

inertial measurement unit, KNN: K-nearest neighbors, LSTM: long short-term memory, ML: machine learning, MLFF: multi-layer feed forward, MLP: multi-layer perceptrons, 

MTANN: massive training artificial neural network, NB: Naïve Bayes, NGS: next-generation sequencing, RBM: restricted Boltzmann machine, RF: random forest, RNN: recurrent 

neural network, SDAE: stacked denoising auto-encoder, SNP: single nucleotide polymorphism, SVM: support vector machine,. 

UE: unsupervised embedding, ∗Also discussed in [74] . 

They conclude that machine learning and deep learning methods 

can be used for the detection of lung nodules, even with a high 

level of sensitivity, specificity and accuracy, however, they also 

conclude that there is no general technique to evaluate the per- 

formance of machine learning methods and algorithms. 

Neuro-oncology – Gliomas represent 80% of all primary malig- 

nant brain tumors. Shaver et al.’s [54] survey provides an overview 

of the recent deep learning-based approaches and applications uti- 

lized for glioma detection and outcome prediction. They focus 

on the pre-operative and post-operative segmentation of tumors, 

genetic tissue characterization, and further prognostication. They 

show and conclude that deep learning-based approaches and ap- 

plications are promising research directions for the segmentation 

and characterization of gliomas, their grading, and for giving a sur- 

vival prediction. 

Diabetic retinopathy – Another survey about diabetic retinopa- 

thy was published by Asiri et al. [55] . They focus on deep learning- 

based computer-aided diagnosis (CAD) systems, which they struc- 

ture into various stages such as lesion segmentation, lesion detec- 

tion, and lesion classification of fundus images. Furthermore, they 

discuss pros and cons of published deep learning-based methods 

to accomplish these tasks. 

Cardiac arrhythmia – Cardiac arrhythmias are most commonly 

detected by an ECG, mainly because of its low cost and convenient 

usage. For these reasons, every day, ECG data is acquired in large 

amounts in hospitals and homes, which, on the downside, prevents 

a detailed manual data inspection. Parvaneh et al. [56] perform 

a review of recent advancements on cardiac arrhythmia detection 

using deep learning. They outline existing works according to five 

different aspects, namely the used dataset, the input data type, the 

kind of application, the applied architecture model, and finally, the 

evaluation of performance. They conclude by presenting the short- 

comings of the surveyed studies and discuss possible future up- 

coming research directions. 

Protein structure – The three-dimensional form of local seg- 

ments of proteins is called protein secondary structure. Wardah 

et al. [57] wrote a review on predicting the secondary structures of 

proteins with deep learning-based approaches such as neural net- 

works. They start with a background section about the secondary 

structure of a protein and introduce the basics of artificial neural 
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Fig. 5. Network visualization for the review articles supplied keywords in 2019 performed with VOSviewer. 

networks. The authors conclude that there are several challenges 

left for the in silico predictions of secondary protein structures. 

Electroencephalography – As stated beforehand in the review 

about EEG classification, EEG analysis is an important yet difficult 

task, which requires several years of training because of its com- 

plexity. Roy et al. [58] performed a systematic survey of the anal- 

ysis of electroencephalography with deep learning methods, cov- 

ering various applications domains, like sleep, epilepsy, cognitive 

and affective monitoring, and brain-computer interfacing. In addi- 

tion, they collected information pertaining to the data, such as the 

pre-processing methodology, the selection of the deep learning de- 

sign, the results, and the experiments’ reproducibility. 

Neurology – The medical branch related to nervous system dis- 

orders (central and peripheral) is named neurology. Neurology cov- 

ers the diagnosis and treatment of such disorders. Valliani et al. 

[59] review various neurology domains where deep learning algo- 

rithms have already been applied, like Alzheimer’s disease diagno- 

sis and early acute neurologic event detection. They also survey the 

segmentation of medical images for a quantitative evaluation of 

the neuroanatomy and vasculature structure, connectome mapping 

for Alzheimer’s diagnosis, autism spectrum disorder (ASD), and at- 

tention deficit hyperactivity disorder (ADHD), as well as explore 

the granular genetic signatures and the signals of microscopic elec- 

troencephalograms. 

Cancer diagnosis – A range of diseases, involving an abnormal 

growth of cells, which can also spread and invade other parts of 

the body, is called cancer. Munir et al. [60] give a bibliographic 

analysis on cancer diagnosis with deep learning-based approaches, 

starting with a background description of the cancer diagnosis do- 

main. They cover the individual steps for cancer diagnosis, but also 

classification methods, like the asymmetry, border, color and diam- 

eter (ABCD) method, the Menzies method, the seven-point detec- 

tion method, and pattern analysis. For each reviewed deep learning 

technique, they link to Python code. They also compile the applied 

deep learning models for different cancer types. Specifically, they 

discuss brain cancer, breast cancer, skin cancer and lung cancer. 

Ultrasound – Ultrasound (US) is commonly used in the clinical 

routine due to it is nonionizing, low-cost, and portable characteris- 

tics, coupled with the ability of providing real-time images. Akkus 

et al. [61] present a review on deep learning-based applications 

in the ultrasound domain with the aim to improve the clinical 

workflow, including improving the acquisition of the US images, 

real-time evaluation image quality, objective detection and disease 

diagnosis, and in general, an overall optimized clinical workflow 

during ultrasound examinations. They also give a specific fore- 

cast of upcoming research trends and directions for deep learning- 

based methods that can facilitate an US diagnosis, but also re- 

duce costs in health care, and provide an optimized clinical US 

workflow. 

Radiation oncology – A physician or doctor who is specialized 

in the treatment of cancer using ionizing radiation, like radionu- 

clides or megavoltage X-rays, is called a radiation oncologist. In 

that context, Boldrini et al. [62] perform a literature review in 

PubMed/Medline with a search strategy including the search terms 

“radiotherapy” and “deep learning”. They identify recent publica- 

tions on deep learning in radiation oncology, which they present 

with a focus on clinically oriented readers. The review shows how 

deep learning can support clinicians during their daily work, such 

as by reducing segmentation times, or predicting treatment out- 

comes and toxicities. However, they conclude that these techniques 

have yet to be employed in the clinical routine, and it remains to 

be seen how well they translate into practice. 

Drug-drug interaction – Drug-drug interactions (DDIs) can cause 

adverse drug effects that have the potential to threaten public 

health and patient safety. Hence, these interactions are crucial for 

drug research and pharmacovigilance. Zhang et al. [63] review 

the state-of-the-art deep learning-based methods used for DDI ex- 

ploration. They briefly outline every deep learning method from 

their surveyed studies and systematically evaluate their efficiency, 

strengths and weaknesses. They conclude their work by provid- 

ing a discussion and giving an outlook on several future research 

challenges for the extraction of DDIs with deep learning-based ap- 

proaches. 

Urology – The medical branch of urology is focused on surgi- 

cal and medical urinary-tract system diseases, including the ure- 

thra, urinary bladder, ureters, adrenal glands and kidneys. The urol- 

ogy branch also focuses on the reproductive organs of males, in- 

cluding the prostate, testes, penis, epididymis, seminal vesicles and 

vas deferens. Suarez-Ibarrola et al. [64] review recent and upcom- 

ing machine learning- and deep learning-based applications in the 

urology domain, with a focus on renal cell carcinomas, urolithi- 

asis, prostate and bladder cancer. This covers, for example, the 

prediction of endourologic surgical outcomes in urolithiasis, the 

automatic distinction between malignant and benign small renal 

masses, the analysis of texture features and radiomics for the dif- 

ferentiation between low-grade and high-grade tumors in blad- 

der cancer, MRI-based computer-aided diagnosis, biochemical re- 

currence prognosis, and prognosis algorithms for the Gleason score 

for prostate cancer. 

Sleep apnea – Sleep apnea is a sleep disorders characterized 

by repeated stopping and starting of breathing. Sleep apnea can 

be scored with polysomnography, which is unfortunately expen- 

sive, inaccessible, uncomfortable and requires an expert techni- 

cian. Mostafa et al. [65] preform a systematic review on the pub- 

lished deep learning-based research contributions used for detect- 

ing sleep apnea. They focus on exploring research subjects includ- 

ing the implementations of neural networks, a possible need for 

pre-processing or manual feature extraction, and finally, explore 
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Table 7 

Methods, pros, cons, challenges and future directions in medical deep learning in 2019. 

Publication Methods Pros Cons Challenges Future Directions 

Medical Imaging 

Biswas et al. [50] 

AE, (fully) 

CNN, DBN, 

DRN, FCN, 

SVM 

-DBM has easy inference 

-Automated feature extraction 

-Learning of complicated and 

composite relationships in data 

-DL methods surpass in 

robustness and performance 

-Unknown generalization 

capabilities (DBN) 

-Vanishing gradient 

problems during training 

(AE) 

-Improvement needed 

before techniques could be 

integrated into clinical 

workflows 

-Only trained on small 

datasets 

-Widespread use in 

research and clinical 

routine 

-Develop real-time 

applications 

Brain cancer 

classification 

Tandel et al. [51] 

ANN, CNN, 

EM, KNN, 

NB, RF, 

SVM 

-Automatically produce features 

that are stable to deformation and 

translation invariant 

-DL outperforms other ML 

methods 

-Computationally more 

expensive 

-Not discussed -Provide the fast, 

non-invasive diagnosis tool 

that the field needs 

Electroencephalogram 

Craik et al. [52] 

AE, CNN, 

DBN, LSTM, 

MLP, RBM, 

RNN, SAE, 

SVM 

-Successfully applied to motor 

imagery, seizure detection, mental 

workload, sleep stage scoring, 

event related potential, and 

emotion recognition 

-Not discussed -Formulation of the input 

data (PSD, wavelet 

decomposition, etc.) 

-Combine convolutions 

and recurrent or RBM 

architectures -Use 

de-noised EEG data 

Neuro-oncology 

Shaver et al. [54] 

ANN, CNN, 

CRNN, 

LSTM, SVM 

-Do not require 

human-constructed features 

-CNN architectures provide high 

accuracies on segmentation, 

characterization, grading and 

survival prediction tasks 

-Requires large quantities 

of annotated data, 

necessitating medical 

expert knowledge and 

significant amounts of 

time 

-Overfitting 

-Lack of large amounts of 

annotated data 

-Undisruptive integration 

into workflows 

-Work with regulatory 

bodies who currently 

restrict the use of ML/DL 

in clinical practice 

Diabetic 

retinopathy 

Asiri et al. [55] 

AE, CNN, 

DBN, RNN 

-Automatic discovery of relevant 

features 

-Ability to train and deliver 

solutions in an end-to-end 

manner 

-Successfully applied to vessel and 

optic disk segmentation, lesion 

detection and classification, 

diabetic retinopathy diagnosis 

-Require large amounts of 

labeled data 

-Tendency to overfit 

-Convergence of DL 

methods not always 

guaranteed 

-Lack of interpretability 

-Class imbalance of 

datasets 

-Lack of large-scale 

annotated uniform 

training data 

-Generalization of DL 

methods 

-More standardization in 

data, labels, and test 

metrics 

-Research GANs 

Cardiac arrhythmia 

Parvaneh et al. 

[56] 

AE, CNN, 

DBN, LSTM, 

RNN 

-Unsupervised information 

capture and feature generation 

-Highest scoring ML 

outperformed best DL 

-Overfitting 

-Lack of interpretability 

-Large datasets needed 

-Research interpretability 

-Identify optimal dataset 

sizes for training and 

testing 

Protein structure 

Wardah et al. [57] 

ANN, CNN, 

GRU, HMM, 

RNN 

-Automatic protein structure 

prediction 

-Reduced time and costs 

compared to traditional in vitro 

analysis 

-Not discussed -Need in vitro techniques 

to determine hard truths, 

limiting datasets 

-Lack of comparability 

-Automated prediction 

methods will drive the 

benchmark in the field 

closer to the theoretical 

accuracy boundary 

(approx. 88%) 

Electrocephalography 

Roy et al. [58] 

AE, CNN, 

DBN, GAN, 

MLP, RBM, 

RNN, SDAE 

-Avoids time-consuming 

traditional feature engineering 

and provides end-to-end solutions 

-Can flexibly work with either 

small or large amounts of data 

-Can generalize to other tasks or 

datasets 

-Successfully applied to tasks 

including brain–computer 

interfacing, sleep staging, epilepsy, 

cognitive and affective monitoring 

-Lack of reproducibility 

and interpretability 

-Lack of labeled data 

-Dataset augmentations 

and hyperparameter 

searches are difficult to 

identify 

-Efforts in reproducibility 

-Exploratory research into 

data quantity vs 

performance 

Neurology 

Valliani et al. [59] 

AE, CNN, 

DNN, GAN, 

GRU, LSTM, 

NB, RNN, 

SVM 

-No manual feature crafting 

-Performance gains with larger 

datasets 

-Successfully applied for medical 

image classification, segmentation, 

functional connectivity, 

classification of brain disorders 

and risk prognosis 

-Require large amounts of 

data to learn 

-High quality labels are 

time-consuming to create 

-Overfitting 

-Lack of interpretability 

-Medical data suffers from 

heterogeneity and 

complexity 

-Data privacy, accessibility 

and ethical concerns over 

potential biases 

-Research into 

generalizability and 

interpretability 

Cancer diagnosis 

Munir et al. [60] 

AE, AFINN, 

(fully) 

CNN, DBN, 

GAN, LSTM, 

RBM, RNN 

-Learn features from raw images 

instead of requiring manually 

constructed features 

-Successfully applied to cancer 

diagnosis on multiple image 

modalities 

-Require large datasets, 

generally with labels, a 

major time/cost 

investment 

-Lack of available datasets 

-Datasets suffer from a 

strong disparity between 

positive and negative 

samples 

-Not discussed 

Ultrasound 

Akkus et al. [61] 

AE, (fully) 

CNN, RBM, 

RNN, SDAE, 

SVM 

-DL outperformed ML in 

generalizability -Successfully 

applied to detection, classification, 

segmentation, and diagnosis of 

lesions and nodules 

-Lack of interpretability 

and explainability 

-Dataset quality and 

performance vary in 

acquisition and 

interpretability 

-Size and quantity of 

public datasets are limited 

-Clinical workflow and 

cost can be reduced 

-Include 3D, multiview 

cine clips, or 

spatiotemporal data into 

AI models 

( continued on next page ) 
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Table 7 ( continued ) 

Publication Methods Pros Cons Challenges Future Directions 

Radiation Oncology 

Boldrini et al. [62] 

ANN, 

(fully) 

CNN, DNN, 

GAN, SVM 

-Can analyze unstructured data 

and extract non-linear features 

without human supervision 

-Capable of dimensional reduction 

-Successfully applied to 

segmentation, outcome, response, 

and survival predictions 

-Loss of functions are 

non-convex and no 

algorithm can guarantee to 

find an optimal solution 

-Overfitting 

-Need for expert 

knowledge in oncology 

and DL for dataset 

curation and training 

-Need for bigger 

standardized datasets 

Drug-drug 

interaction 

Zhang et al. [63] 

CNN, GRU, 

LSTM, RNN, 

recursive 

neural 

network 

-No need for manual feature 

engineering 

-CNNs can generate 

translation-invariant descriptions 

from data 

-RNNs can selectively hold 

relevant information in memory 

and analyze arbitrary length text 

inputs 

-Tendency to be unstable 

during training 

-Lack of interpretability 

-Unstructured data and 

class imbalances 

-Semi-/self-supervised 

learning, joint learning 

models, N-ary relation 

extraction, feature 

enrichment, interpretable 

modeling 

Urology 

Suarez-Ibarrola 

et al. [64] 

ANN, CNN, 

SVM 

-Details not discussed -In some cases, ML/DL 

were favorable to human 

raters, but traditional 

statistical methods 

outperform them, 

particularly in the field of 

urolithiasis 

-Equipment variants and 

non-standardized data 

collection 

-Generalization 

-Heterogeneity of 

employed models and 

datasets 

-Create large-scale public 

datasets 

-Keep downscaling in 

mind to employ DL 

methods in real-time or 

on mobile devices 

Sleep Apnea 

Mostafa et al. [65] 

CNN. DBN, 

GRU, LSTM, 

MLP, RNN, 

SSAE 

-Increased performance of DL vs 

ML methods 

-Details not discussed -Imbalanced heterogenous 

datasets 

-Hyperparameter search 

-Not discussed 

Ophthalmic 

diagnosis 

Sengupta et al. 

[66] 

(fully) 

CNN, FNN, 

MBNN, RF, 

SSAE, SVM 

-DL outperforms for lesion and 

vessel segmentation, acute 

macular degeneration, glaucoma 

and diabetic retinopathy 

classification 

-Requires large amounts of 

annotated data for training 

-Can suffer from domain 

shift between training and 

test sets 

-Generalizability 

-Class imbalance 

-Data acquisition and 

performance indicators are 

heterogeneous across 

reported papers 

-Research generative 

models to augment 

existing datasets or 

balance classes 

-Domain adaptation 

Alzheimer’s 

disease 

Ebrahimighahnavieh 

et al. [67] 

AE, CNN, 

DBN, DNN, 

DPN, HMM, 

DBM, RBM, 

SVM 

-Suited for modeling non-linear 

relationships 

-Robust against translation and 

transformations of target features 

-Capable of automated feature 

generation 

-Require large amounts of 

data for training 

-Loss of generalization 

capability 

-Overfitting, computational 

cost and robustness 

-Unpublished code bases 

-Dataset imbalances and 

lack of data 

-ROI-based methods 

require extensive domain 

expert knowledge 

-Public benchmarking 

platform for fair 

comparisons of models 

-Explainable AI 

-Generation methodology 

Pulmonary nodule 

detection 

Li et al. [68] 

(MT)ANN, 

CNN, SDAE 

-MTANNs and SDAEs can learn 

with fewer training examples than 

CNNs and generate new data 

easily 

-Successfully applied to detection 

and classification of pulmonary 

nodules 

-Longer training times and 

greater dataset 

requirements 

-Small datasets in 

medicine 

-Overfitting 

-Heterogeneity of results -Research into consistent, 

standardized integration of 

DL into clinical workflow 

Liver masses 

Azer [69] 

(fully) 

CNN, GAN 

-Successfully applied to detection, 

classification, and segmentation of 

liver masses 

-Details not discussed -Heterogeneity of results -Standardize reporting, 

report multiple 

performance metrics, 

practically apply, 

reproduce 

-Collaborative data 

acquisition 

-Case control studies to 

compare DL methods with 

human raters 

Pulmonary medical 

imaging 

Ma et al. [70] 

ANN, 

(fully) 

CNN, DPN, 

neural hy- 

pernetwork 

-Self-learning and generalization 

-Can extract information both 

from simple and complex data 

structures 

-High computational and 

dataset size requirements 

-Lack of interpretability 

-Class imbalances in 

datasets 

-Varying image quality 

-Make use of unlabeled 

medical data to ease the 

annotation bottleneck 

-Develop more 

interpretable DL models 

Abbreviations: AE: auto-encoder, AFINN: adaptive fuzzy inference neural network, ANN: artificial neural network, CNN: convolutional neural network, CRNN: convolutional 

recurrent neural network, DBN: deep belief network, DBM: deep Boltzmann machine, DL: deep learning, DNN: deep neural network, DPN: dual path network, DRN: deep 

residual network, EM: expectation maximization, FCN: fully connected network, FNN: feed-forward neural network, GAN: generational adversarial networks, GRU: gated 

recurrent units, HMM: hidden Markov model, KNN: K-nearest neighbors, LSTM: long short-term memory, MBNN: Multi-branch neural network, ML: machine learning, MLP: 

multi-layer perceptrons, MTANN: massive training artificial neural network, NB: Naïve Bayes, RBM: restricted Boltzmann machine, RF: random forest, RNN: recurrent neural 

network, SAE: stacked auto-encoder, SSAE: Stacked sparse auto-encoder, SVM: support vector machine. 

the reported applications in terms of implementation and perfor- 

mance. The applied sensors, signals, databases and implementation 

difficulties have also been taken into consideration for an auto- 

matic, deep learning-based scoring process. 

Ophthalmic diagnosis – Sengupta et al. [66] provide another re- 

view on ophthalmology, focusing on ophthalmic diagnosis using 

deep learning approaches based on fundus images (the back sur- 

face of the eye). They discuss recent deep learning approaches for 

diabetic retinopathy, glaucoma and age-related macular degenera- 

tion, and describe numerous datasets consisting of retinal images, 

which can be processed for deep learning-based ophthalmic tasks. 

Areas of applications from their surveyed works include segmen- 
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tation of the optic cup, optic disk, and blood vessels, as well as 

lesion detection. 

Alzheimer’s disease – In developed countries, Alzheimer’s Dis- 

ease (AD) is one of the leading causes of death. AD is a chronic 

neurodegenerative disease that often starts slowly, but progres- 

sively worsens in the long-term. In this regard, Ebrahimighah- 

navieh et al. [67] systematically reviewed deep learning-based 

methods for an automatic AD detection from neuroimaging. They 

focus on the extraction of effective f eatures and biomarkers, like 

genetic data, personal information, and scans of the brain, as well 

as required pre-processing steps and tips for handling neuroimag- 

ing data that comes from single- or multi-modality investigations. 

Moreover, they compare the performance of the deep learning 

models in AD detection and discuss remaining challenges, includ- 

ing the applied training strategies and datasets that can be ac- 

cessed. 

Pulmonary nodule detection – Another systematic review on 

deep learning-based methods in pulmonary nodule detection was 

published by Li et al. [68] . They focus on the detection and 

classification of nodules using CT scans not from the LIDC-IDRI 

database. They found that three types of deep learning architec- 

tures are commonly used, namely convolutional neural networks, 

deep stacked denoising autoencoder extreme learning machine 

(SDAE-ELM) methods and massive training artificial neural net- 

works (MTANN). They conclude that high accuracy, specificity and 

sensitivity scores can be obtained with deep learning-based ap- 

proaches in nodule classification and detection using CT scans not 

from the LIDC-IDRI cases. 

Liver masses – A liver mass is a lesion in the liver that can be 

caused by an abnormal cell growth, a cyst, hormonal changes, or 

an immune reaction, but is not necessarily cancer. Azer [69] per- 

forms a systematic analysis on deep learning-based approaches, 

specifically convolutional neural networks (CNNs), for the detec- 

tion of liver masses as well as hepatocellular carcinomas (HCCs). 

PubMed, the Web of Science, EMBASE and further research books 

were searched systematically, thereby identifying works analyzing 

cellular images, pathological anatomy images, and radiological im- 

ages of liver masses or HCCs. The level of accuracy and CNN per- 

formance in cancer detection were presented with a focus on an- 

alyzing the kinds of liver masses and cancers and determining the 

image types which proved optimal for the precise detection of can- 

cer. 

Pulmonary medical imaging – Ma et al. [70] present an anal- 

ysis on deep learning-based approaches for pulmonary medical 

imaging. Topics include classification, detection, and segmentation 

tasks in regard to pulmonary medical images, but also benchmarks 

and datasets. They provide an outline of the reviewed approaches, 

which have been implemented for different diseases of the lung, 

such as pneumonia, pulmonary embolisms, pulmonary nodules, 

and interstitial lung disease (ILD). Finally, they discuss the future 

challenges and potential directions in the area of medical imaging 

with deep learning techniques. 

2.3.1. Diving deeper: architectures, evaluations, pros, cons, challenges 

and future directions in 2019 

Table 7 presents more details about the presented methods, 

pros, cons, evaluations and challenges and future directions for the 

reviews from the year 2019. Interestingly, while most reviews cite 

largely the same advantages and disadvantages for deep learning, 

authors occasionally disagree on whether specific aspects of neu- 

ral networks pose advantages, disadvantages or challenges, par- 

ticularly concerning data availability. Some studies have had suc- 

cess training with very small datasets, while others did not, sug- 

gesting that not all the nuances of data pre-processing, augmen- 

tation, and training processes are fully understood yet. Many re- 

views report that individual papers could not be fairly compared 

in terms of performance due to the heterogeneity of methods and 

key performance indicators used, as well as due to the mani- 

fold differences in both datasets and data acquisition between re- 

ported papers. There appears to be a significant research gap in 

terms of standardization for these issues. Sometimes simpler sta- 

tistical methods or traditional machine learning outperform deep 

learning and occasionally deep learning is reported to work better 

when shallower architectures are used, but typically deep learn- 

ing methods handily outperform any competitors except human 

raters with years of experience. CNN architectures are typically 

used/reported the most often in the various review papers and 

many authors specifically report that CNNs appear to dominate 

the field both in terms of performance and prevalence. Lastly, 

deep learning methods are not deployed in clinical practice de- 

spite regularly achieving state-of-the-art results. Authors typically 

cite ethical concerns due to lack of interpretability, potential lack of 

generalizability, and unknown (or unknowable) biases as the rea- 

son. Thus, practical applications and real-world performance test- 

ing of newly developed deep learning methods, as well as deeper 

investigations into Explainable AI, constitute significant research 

gaps. 

3. Conclusion 

In this work, reviews and surveys on medical deep learning are 

presented in a systematic meta-review contribution. A systematic 

search has been performed in the common medical search engine 

PubMed, which resulted in over 40 review or survey publications 

published during the last three years. In addition to a brief sum- 

mary of each survey, the references and citations of these reviews 

are presented (status as of August 2020). 

Before 2017, no medical deep learning review article has been 

indexed under PubMed according to the proposed search strat- 

egy. This is easily explainable, because even though these kind of 

approaches had already been suggested and applied at the end 

of the last century [ 71 , 72 ], deep learning-based approaches only 

started to gain massive popularity after the convolutional neu- 

ral network architecture AlexNet [73] won the ImageNet chal- 

lenge in 2012. From that moment on, deep learning and convo- 

lutional neural networks have received inexorably increasing at- 

tention in various communities, including medical image analysis. 

However, it took some time to have enough published works for 

the first review or survey articles. In addition, there is also a mas- 

sive number of review and survey articles in other, general disci- 

plines. To give a rough impression of these, we performed an addi- 

tional non-systematic search, which is, however, far from complete 

and the results are only presented in a systematic listing, because 

these works would go far beyond the scope of this contribution. 

Nonetheless, they may be an inspiration for interested readers and 

we arranged them in three categories (more details can be found 

in [74] ): 

1. Computer vision 

Object detection [75–77] 

Image segmentation [ 78 , 79 ] 

Face recognition [80–82] 

Action/motion recognition [ 83 , 84 ] 

Biometric recognition [ 85 , 86 ] 

Image super-resolution [87] 

Image captioning [88] 

Data augmentation [89] 

Generative adversarial networks [90] 

2. Language processing 

General language processing [91] 

Language generation and conversation [92–95] 
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Named entity recognition [ 96 , 97 ] 

Sentiment analysis [ 98 , 99 ] 

Text summarization [100] 

Answer selection [101] 

Word embedding [ 102 , 103 ] 

Financial forecasting [104] 

3. Further works 

Big data [105–107] 

Reinforcement learning [108–110] 

Mobile and wireless networking [111] 

Mobile multimedia [112] 

Multimodal learning [113] 

Remote sensing [114] 

Graphs [115] 

Anomaly detection [116] 

Recommender systems [117] 

Agriculture [118] 

Multiple areas [119–121] 

4. Discussion 

Typically, new trends in image processing are applied at first 

to general computer vision tasks, for example to 2D photos, before 

they are adapted and translated to tasks in the medical domain. 

This has several reasons. Firstly, 2D image processing is much less 

computationally intensive compared to processing large 3D image 

volumes from CTs or MRIs. Secondly, the algorithms are in gen- 

eral more “complex” and sophisticated (in terms of implemen- 

tations) for 3D volumes than for 2D image processing, because 

they need to process one or more dimensions (if several scans 

at different time points have been acquired). Thirdly, often sev- 

eral image modalities and volumes, like combined positron emis- 

sion tomography-computed tomography (PET-CT) scans, are avail- 

able, and processing them jointly leads to information gain, but 

also increases the complexity. This is even more cumbersome if 

scans from different time points and/or different modalities, like 

CT and MRI, are not registered to each other. Finally, yet impor- 

tantly, medical data is much harder to acquire and collect than 

for example natural images, especially in large quantities, not only 

because of the very time-consuming, often slice-by-slice manual 

ground truth generation and memory capacities, but also because 

of privacy concerns. Medical data is usually highly sensitive and 

personal, and therefore, using it for research purposes requires in- 

stitutional review board (IRB) approvals and patient consent. Gen- 

erally, data has to be pseudonymized / anonymized, by removing 

meta-information from the images and corresponding files, includ- 

ing name, sex and birth date. However, this is relatively easy com- 

pared to patient information that is encoded within the images 

themselves, like the patient’s face in a head scan. Removing the 

eye area for patient de-identification within a 3D volume is pos- 

sible, but laborious, because it must be done manually for every 

scan to make sure the volumes are properly de-identified. A fully 

automatic approach is conceivable, yet highly risky and potentially 

disastrous if it fails for even a single case. For head scans, de- 

identification by removing the eye area can be an option if the re- 

search is performed on a structure in another area of the head, like 

the lower jawbone [ 122 , 123 ], but on the downside, it can render 

the images unusable for applications requiring the entire volume, 

for example, facial-based medical augmented reality for the head 

and neck regions, for which all facial features are needed [ 124 , 125 ]. 

The IRB may allow the usage of the medical data for research pur- 

poses, but only within their own institution. This means that re- 

searchers from other institutions cannot re-use the existing data 

to validate published results or build upon existing methods to 

push the research boundaries. As a result, a considerable amount 

of effort has to be invested into obtaining IRB approval, acquiring 

data, and de-identification, which may delay new research by a 

few months, at best. Therefore, for large collections of rare patho- 

logical cases, it can easily take several years to establish a com- 

prehensive database. Nonetheless, and against all odds, the mas- 

sive amount of medical deep learning contributions is still increas- 

ing, and the proposed search strategy already reveals around 50 

reviews or surveys for deep learning in PubMed by August 2020, 

which is more than all reviews from 2017 to 2019 together ( Fig. 6 ). 

Equivalent to [58] , we also looked at the locations of the first au- 

thor’s affiliations to get a sense of the geographical distribution of 

the medical deep learning reviews from this meta-review, and it 

reveals that the hotspots are the USA and China ( Fig. 7 ). In case 

the first author provided several affiliations, we chose the very first 

one listed in the article. 

The large amount of survey and review papers on medical deep 

learning published within the last three to four years is an in- 

dicator of the massive influence and importance that these algo- 

rithms already have in the medical community, and resulting clin- 

ical applications. This meta-review shows that, on average, a med- 

ical deep learning review has been published almost every month 

during the last years, with an approximately exponential increas- 

ing trend that seems to continue, if the distribution into the year 

2020 is considered. Another indicator for the impact of deep learn- 

ing in the medical field is the number of references ( > 5.0 0 0) and 

citations ( > 7.0 0 0) of the reviewed works. Besides the successes in 

outperforming state-of-the-art methods, there are several further 

reasons for and increase in research activities in (medical) deep 

learning: 

– (1) The relatively easy application of deep learning algorithms 

to new data, enabled by comprehensive and user-friendly li- 

braries and toolkits, like TensorFlow [126] , PyTorch [127] or 

Caffe [128] , just to name a few. These frameworks do not nec- 

essarily require an in-depth education in computer science. In 

contrast, in the era before deep learning, very good coding skills 

in programming languages like C or C ++ were required to im- 

plement complex image processing algorithms. Factors like op- 

timization for a reasonable runtime played a much larger role, 

as hardware was much weaker a few years ago. 

– (2) Related to the first reason, most deep learning libraries and 

toolkits support Python bindings, which is a high-level, inter- 

preted programming language, and therefore, easier to learn, 

apply and deploy compared to the aforementioned, compiled 

programming languages, like C or C ++ . 

– (3) Relating to hardware, the broader availability of graphical 

processing units (GPUs) certainly contributed to the large dis- 

tribution and application of medical deep learning and deep 

learning in general. Pretty much all deep learning libraries and 

toolkits natively support optimized training and execution of 

algorithms on a GPU, which speeds up the computation time 

many times over and makes many interesting big data appli- 

cations possible. High-capacity GPUs decreased in price over 

the last few years, and GPU clusters, nowadays usually available 

at universities, research centers and companies, enable further 

parallelization and faster processing. Furthermore, GPU cloud 

servers and services (e.g. from Google Cloud or Amazon Web 

Services) can be accessed by everyone. 

– (4) Another reason for the rapid spreading and adoption of 

deep learning (note that there is also already a review about 

artificial intelligence / deep learning techniques in imaging data 

acquisition, segmentation and diagnosis for covid-19 [129] , and 

another one is on the horizon [130] ), is that many researchers 

make their code publicly available to the research commu- 

nity, which is easily possible thanks to online repositories, like 

GitHub or GitLab. Because most implementations use common 
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Fig. 6. Review and survey articles for medical deep learning in PubMed over the years (status as of August 2020). 

Fig. 7. World map showing the number of reviews per country according to the first author’s affiliations. 

deep learning toolkits, they can often be applied to new data 

without too much adaption. 

– (5) The beforehand mentioned open access culture is promoted 

by publication venues, which require source code and data to 

be made openly available alongside the publication, like the 

Scientific Reports journal. This ensures reproducibility and ver- 

ification by other researchers. 

– (6) Furthermore, there are specific data journals, like Scien- 

tific Data or Data in Brief that provide venues to make medical 

datasets and data descriptors available to the research commu- 

nity. This makes it attractive to offer in-house datasets to the 

community (which is, first of all, a free service), because the 

data creators get an additional (citable) journal publication for 

their effort s. 

– (7) Finally, deep learning is data-driven, which means it lives 

and dies by the amount of data it is fed, hence, the increasingly 

number of public medical databases, like the Cancer Imaging 

Archive or the Human Connectome Project, can be seen as very 

import driving forces behind the translation of deep learning 

into the medical domain. 

It will be interesting to see what the future holds for us in the 

field of medical deep learning. Deep learning certainly already has 

an immense impact on the daily life of a large number of peo- 
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ple via the countless applications that are based on this technique, 

such as, virtual personal assistants like Amazon’s Alexa, Apple’s Siri 

or Google’s Now. However, as several real-life examples recently 

demonstrated, deep learning algorithms are not inerrant, as evi- 

denced by tragic car accidents with self-driving cars, racist miss- 

classifications of images, or the machine learning bot Tay from Mi- 

crosoft that became (some kind of) a (virtual) sexist neoNazi [131] . 

Another relevant example is Google Photos, which identified two 

black persons as gorillas back in 2015 [132] . Someone could argue 

that a human raised and educated in a sexist or racist environment 

might also develop a similar behavioral attitude: Whether the al- 

gorithm did this willingly is more of a philosophical discussion. In- 

terestingly, Google “fixed ” the problem by removing and blocking 

the image categories “gorilla ”, “chimp ”, “chimpanzee ” and “monkey ”. 

So, in summary, even leading technology companies face difficul- 

ties when it comes to ensuring that the output of data-driven algo- 

rithms do not lead to prejudices, racism or stereotypes of any kind. 

If we translate this issue to the medical area, where complex 3D 

volumes are used for (life-critical) clinical support, this is very sig- 

nificant. It should also be mentioned that tasks where deep learn- 

ing outperformed humans have often been performed under labo- 

ratory conditions , with a fixed set of samples, not including real-life 

tests, or further weaknesses [133] , and recent publications show 

how deep neural networks can easily be fooled [134] . 

In summary, we identified the following primary research gaps 

while analyzing the reviewed works: 

• Almost none of the reported deep learning algorithms were in- 

corporated into clinical workflows, mostly due to ethics and 

trust concerns (“How can we trust the neural network not to be 

wrong/biased, when we don’t understand why it answers the 

way it does?”), making the testing and integration into clinical 

practice a prominent research gap. 
• Along the same vein, research into more interpretable “Explain- 

able AI” constitutes a large research gap that is particularly rel- 

evant to understand the underlying methods. And even more 

relevant to healthcare is an evidence-based medicine where an 

efficacy must be demonstrated empirically [135] . 
• A lack of well-annotated, multi-institutional, public datasets 

(particularly for medical disciplines using data other than ra- 

diographic images) was reported by most review authors, who 

also suggested that many individual papers reported the po- 

tential for increased performance based on more data. This re- 

search gap still exists today (early 2022), with particular rel- 

evance in niche disciplines or concerning rare diseases, where 

the data volume is low to begin with, but decreases in signif- 

icance over time, as more and more such datasets and other 

techniques, like Federated Learning [136] , become available. 
• There exists a distinct lack of reliable standardized key per- 

formance indicators for deep learning methods in the field of 

medical research. Therefore, standardization of data, data acqui- 

sition and performance reporting represents an important facet 

of deep learning (albeit less of a research gap and more of a 

trend in the field). 
• The tuning of model architecture, data processing and augmen- 

tations, and training hyperparameter choice appears to have a 

significant effect on the eventual performance of the model. 

However, due to the “black box” nature of most deep learning 

models, optimal choices in this regard are often difficult to as- 

certain. Optimization of this trial-and-error process represents 

a significant research gap, which is already an intensively dis- 

cussed topic in the wider deep learning community. 
• Only a few works cover multimodal data and the majority of 

works focus on single-modality data. However, physicians con- 

sider a multitude of resources when treating patients, which 

computer-assisted methods should also do and there should be 

a stronger focus on methods that can simultaneously process 

multimodal data [137] . 

5. Author’s perspective 

From a high-level point of view, and to formulate it provoca- 

tively, some tasks like medical image segmentation have already 

been solved over thirty years ago, as can be seen by the claims 

within the countless publications released in the past years. In ad- 

dition, the entire computer vision field seems to move from a gen- 

eral hot topic to another one over the years, like deformable mod- 

els in the late ‘80 s [138] , graph-based approaches in early ‘00 s 

[139] , and, finally, deep neural networks after 2010 [140] . This is 

also reflected by the sharp drop or rise of citations for these pub- 

lications, depending on the addressed methodology. A more realis- 

tic picture of the feasibilities of the proposed works during these 

times may be biomedical challenges, where authors are encour- 

aged to develop algorithms for a specific task [141] , for exam- 

ple the very influential brain tumor segmentation (BraTS) chal- 

lenge, about the automatic segmentation of brain tumors or our 

new AutoImplant challenge from 2020 [142] , about automatic cra- 

nial implant design. The quantitative and qualitative evaluation re- 

sults are often presented afterwards in a compact summary publi- 

cation [143] . This definitely enables a more objective view on what 

is currently possible with the state-of-the-art methods (in this re- 

gard, also note the new BIAS guidelines for transparent reporting 

of biomedical image analysis challenges [144] ), even though such 

challenges usually cannot replace a real evaluation in a clinical set- 

ting. 

Finally, it should be mentioned that most medical deep learn- 

ing applications are still in an early phase of development and 

have not yet found their way into real clinical practice. This stands 

in strong contrast to non-learning approaches, like those used in 

medical navigation systems for neurosurgery [ 145 , 146 ]. However, 

most computer science venues for dissemination, especially flag- 

ship venues, explicitly prefer and demand new algorithms, while 

works that focus on the applicability of existing methods to real, 

variable, and noisy clinical scenarios are nipped in the bud with 

the argument that they lack technical novelty. At the same time, 

to foster their status in academia, researchers commonly need to 

fulfill the expectations of selected publication venues. In many sit- 

uations, world-leading experts and members of the MICCAI com- 

munity have been expressing concerns about the practical usabil- 

ity of the research output, too often limited to ideal scenarios. It 

is not uncommon to hear criticism about that fact that even high- 

impact conference proceedings usually contain a huge number of 

tools and algorithms that are designed for ideal or limited sce- 

narios and may be therefore inapplicable or sometimes unneeded. 

MICCAI fellow D. Shen (author of the very first review article in 

the field of medical deep learning according to our search strategy, 

see epub date in Table 2 ) summed up this issue in a recent public 

statement on LinkedIn [147] : “In MICCAI field, people are studying 

same problems (sometimes ideal problems) with very similar meth- 

ods for many years. Everyone claims their method is new (although 

mostly just simply borrowing from others). This is very serious issue, 

since people in this small academic field judge contributions of their 

works by themselves. If MICCAI people can just move a little bit out 

of their academic field, i.e., thinking more on real applications in clin- 

ical workflow, this issue can be largely avoided. We, as faculty, have 

more responsibility for changing this situation ”. A step towards this 

direction could be that interdisciplinary and application-oriented 

venues encourage the involvement of a medical partner, includ- 

ing a statement of feasibility in the clinical practice. Furthermore, 

several interdisciplinary venues do not explicitly require any IRB 

approval statement, even if the manuscripts deal with clinical pa- 

tient data (an exception here are publicly available datasets, but 
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many works are still evaluated on private datasets provided by a 

medical partner, which also hinders an objective analyzing and re- 

porting in reviews). In most medical venues, this is a standard re- 

quirement and submissions are rejected if the manuscript does not 

contain an official IRB or patient consent statement. Note that an 

approval from an ethics commission is also a pre-check for reason- 

ability and should stop research endeavors that would harm the 

patient, for example by additional radiation exposure, or do not 

adhere to clinical workflows. 

Nevertheless, and to pick up the “not yet found their way into 

the real clinical practice ” and “limited to ideal scenarios ” thoughts 

from before, some deep learning experts claim that just adding 

enough (training) data will automatically lead to perfect results. 

Contradictory to this opinion, cars have driven already millions of 

kilometers to acquire training data, but fully self-driving capabili- 

ties are still far away from being reliable, especially under different 

weather and light conditions. In this light, Tesla recently removed 

the “full self-driving ” option from its car store on its website and 

Uber completely abandoned the development of self-driving cars. 

It should also be noted that in the medical field, such a massive 

amount of data will, in many cases, never be available. Certain 

pathologies are simply (and thankfully) not frequent enough, so 

even by collecting all the patient data for this pathology from the 

hospitals around the world and applying additional data augmen- 

tation methods [148] , there still might not be enough for training 

powerful algorithms. 

Nonetheless, there have been certain tasks where machine 

learning has undoubtedly outperformed humans already. Examples 

are Deep Blue [149] and AlphaGo [150] in games, where machine 

learning algorithms could even beat the best (known) human play- 

ers around the world. However, these tasks have strong constraints 

by fixes rules on which algorithms can rely on. In contrast, medical 

tasks usually do not follow such rules and theoretically, unlimited 

possibilities exist. For example, a brain tumor [151] looks differ- 

ent for every patient in terms of shape, size, texture, etc. Another 

example is the human voice, with individual pitches and pronun- 

ciations, and further the inter-human variations when expressing 

different emotions [152] . In addition, algorithms can fall back on 

a massive database of pre-trained games and game moves, with- 

out any further uncertainty. Another example where deep learning 

works very well in practice is the automatic detection and anal- 

ysis of car licenses. Despite several challenges and uncertainties, 

like different fonts, colors, languages, deformities, complex back- 

grounds, hazardous situations, speeding vehicles, occlusion, hor- 

izontal or vertical skew, blurriness, and illumination diversions 

[153] , the recognition task still stays within a restricted rule set. 

Therefore, learning algorithms can be pre-trained, for example, by 

just going over the alphabet with variations, like changing the font, 

colors, adding some occlusion, etc. It should be kept in mind that 

still, vehicular license plate recognition is far from perfect. 

In principle, deep learning is trying to mimic the human brain, 

especially the learning process of a human brain [154] . Equiva- 

lent to the fact that we cannot look into someone’s brain with 

its thoughts or mindset, it is also not yet fully understood what is 

going on inside a deep neural network (even though we have ac- 

cess to all neurons and its connections, in contrast to a human’s 

brain) [155] . Hence, it is as hard to predict exceptions and fail- 

ures as seen in recent events, like car accidents, as it is to foresee 

human behavior and mistakes (even if there are, ironically, deep 

learning works that try to predict human behavior [156] ). Trained 

neural networks with several layers and with a few hundred or a 

few thousand neurons are not understandable anymore in all de- 

tail [155] . This stands in strong contrast to pure engineering ap- 

proaches, which can be understood in every detail. That makes 

the acceptance of such black box (some even call it Voodoo [157] ) 

approaches, like deep learning, by the general population much 

harder. At this point, we want to refer the interested reader to the 

concept of disentanglement, which tries to make latent represen- 

tations interpretable [158] . 

To conclude, deep learning is an exciting new field with a lot 

of potential, but not free of controversies. We believe that this 

first meta-review of medical deep learning reviews and surveys 

can provide a quick and comprehensive reference for scientists (or 

just interested readers) who want to get a high-level overview of 

this field, and maybe want to contribute and thus, accelerate the 

development in medical deep learning. Hence, the contribution of 

this systematic meta-review is sixfold: 

• providing an overview of current deep learning reviews where 

a medical application plays the key role, 
• arranging the researched works chronologically for a historical 

“roten Faden ” ( red/common thread ) and picture over the years, 
• extracting the overall number of referenced works and citations 

to give an impression of the research influence and footprints of 

the respective field, 
• analyzing, exploring and highlighting the main reasons for the 

massive research efforts on this topic, 
• conducting a comprehensive discussion of the current state-of- 

the-art methods in the deep learning area with achievements 

but also failures from other domains that should be avoided in 

the medical area, 
• and providing a critical expert opinion and pointing out further 

controversies. 
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1 Supplemental Material

The purpose of this section is to give the interested reader a ’lightweight’
introduction about the technical background of deep learning, for a better
understanding of our meta-review contribution [1] and to make the manuscript
self-contained. Thus, we avoid that the reader of our manuscript needs to consult
other, additional sources for an overall understanding of our contribution. In
doing so, we stay mostly within the ’general’ deep learning domain, not explicitly
focusing only on medical-specific concepts, because most deep learning-based
concepts studied in the medical domain originate from classic non-medical
domains, like computer vision, and can be used and applied to several domains.
Only at the end of this supplemental material, we discuss some segmentation
characteristics for medical images. Readers who are already familiar with the
basic concepts of deep learning, can skip this section and dive directly into the
main body of our manuscript.

The first section, 1.1, of this supplemental material, explains the basic princi-
ples and structures of artificial neural networks (ANNs) and how they work,
beginning from a single perceptron to multilayer perceptrons and common
activation functions. Then, in section 1.2 more detailed information about deep
neural networks is given, in which the process of training is explained, including
loss functions as well as different parameter optimizers, and common issues of
training ANNs. Next, insights into the theory of Convolutional neural networks
(CNNs), autoencoders (AE) and variational autoencoders (VAE) are stated.
Then, an overview of different methods of image segmentation is listed in section
1.3. Furthermore, an overview of PyTorch, a common deep learning library
used by the research community, is provided in section 1.4. This section closes
with basic information about CUDA in section 1.5, the platform developed by
Nvidia, which is commonly used to accelerate the training process of ANNs.
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1.1 Artificial Neural Networks

The basic architecture of artificial neural networks (ANNs) is inspired in a
simplified way by the processes of the human brain. A description of the
neural activity is provided by McCulloch and Pitts [2]. ANNs are artificial
systems, which work in an adaptive manner and can modify their internal
relations and structures. Neural networks are particularly suitable for tasks
in the nonlinear domain. In particular, during the process of training ANNs,
these try to understand the problems and rules of the task [3].

1.1.1 Perceptron

The simplest type of ANN is called perceptron (Figure 1.1) and was designed
by Rosenblatt [4]. The perceptron is a single computational layered network
and consists of an input and output layer. The output y, as stated in equation
1.1, is calculated by summing up the n input features of the input vector
X = [x1, x2, ..., xn] times the corresponding weights W = [w1, w2, ..., wn] and
passing the result into an activation function f(·). In some cases, a bias b is
added to the sum of weighted feature values, which represents the invariant
part of the prediction and is stated in equation 1.2 [5].

y = f(X ·W ) = f(
n∑
i=1

xiwi) (1.1)

y = f(X ·W + b) = f(
n∑
i=1

xiwi + b) (1.2)

The perceptron algorithm uses the sign function (1.3) as an activation function
to perform binary linear classification on the input data (1.4). The sum of
weighted feature values is mapped to {+1, -1} [5].

sign(x) =

{
1, for x ≥ 0

−1, otherwise
(1.3)

y = sign(X ·W + b) = sign(
n∑
i=1

xiwi + b) (1.4)
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Figure 1.1: The figure illustrates the architecture of a perceptron with inputs x1, ..., x5,
weights w1, ..., w5, a bias b and the resulting output y after the activation function.

1.1.2 Multilayer Perceptrons

Multilayer perceptrons (MLPs), also known as multilayer neural networks,
consist of multiple layers of neurons. In addition to the perceptron, which
has only one calculation layer, the output layer, MLPs use intermediate layers
(hidden layers) to solve more complex tasks. The standard architecture of MLPs
are known as feed-forward networks, where neurons of a layer are connected to
neurons of the consecutive layer in forward direction [5]. Therefore, feed-forward
networks do not incorporate feedback connections like loops to previous layers.
If ANNs include feedback connections they are called recurrent neural networks
[6].

1.1.3 Activation Functions

The choice of a proper activation function for a particular task and network
architecture is crucial for balanced training and network convergence. They do
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not only impact the convergence speed, but also the neural network’s accuracy
and computational efficiency. Different types and modifications of activation
functions exist to satisfy different purposes.

The most commonly used function is the Rectified Linear Unit (ReLU) intro-
duced by Nair and Hinton in [7], shown in figure 1.2 a). ReLU returns zero for
any negative input, but returns any positive input unchanged:

f(x) = max{0, x} (1.5)

Therefore, ReLU is a simple yet powerful non-linear function. Training with a
ReLU activation function via gradient-based optimization has, however, one
disadvantage: it is not able to learn from inputs that generate zero activations.
General problems of training neural networks are exploding or vanishing gradi-
ents. The drawback of ReLUs are vanishing gradients, which is referred to as
dying ReLU and can occur if many or all neurons enter an inactive state and
output zero for any input [8].

One advancement is Leaky ReLU, which was invented by Maas, Hannun and Ng
[9]. It is a more generalized modification of ReLU and uses a non-zero slope α
for x < 0 to have gradients everywhere, as shown in equation 1.6. The standard
value of α is 0.01. This small slope solves the problem of dying activations
[6]:

f(x) =

{
x, for x > 0

αx, otherwise.
(1.6)

Before ReLU and its modifications were introduced, the sigmoid and hyperbolic
tangent (tanh) activation functions were commonly used in neural networks:

σ(x) =
1

1 + e−x
(sigmoid function) (1.7)

tanh(x) =
e2x − 1

e2x + 1
(hyperbolic tangent function) (1.8)

Both activation functions are closely related and have a similar shape, as shown
in c) and d) of figure 1.2. The sigmoidal activations are in the range [0, 1],
which are vertically re-scaled to [−1, 1] for the tanh activations [5]:

tanh(x) = 2σ(2x)− 1 (1.9)
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One backdraw of sigmoidal units is their difficulty to train, because of saturation.
If x is very low or very large, the outputs saturate to the maximum or minimum,
respectively. Therefore, piecewise-linear activation functions are preferentially
used in hidden layers. Sigmoidal activation functions can be used as output
units, representing a probabilistic output, although the tanh activation function
performs better and is easier to train [6].

Figure 1.2: Various activation functions for artificial neural networks (ANNs).

1.2 Deep Learning

Deep learning refers to ANNs with a high amount of layers resulting in lots of
parameters. Such networks are called deep neural networks (DNNs) and started
to shine when computational power strongly increased and large datasets got
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available. Since then, large models were introduced, which have millions of
parameters and reach top accuracies in different domains, for example, speech
or image processing [6].

1.2.1 Training a Deep Neural Network

DNNs distinguish between the training phase and the test (prediction) phase,
in which a train and a test dataset are used, respectively. In a multi-layer
feed-forward network the final output is calculated by the composed functions
of each layer, for example f(x) = f (3)(f (2)(f (1)(x))) [6].

After calculating the network’s output, the prediction error is calculated based
on a specific loss function. In most deep learning projects, the network is
optimized with some sort of gradient descent optimizer, which iteratively
minimizes the total loss [6].

The gradients for the gradient-descent optimizers are calculated with the back-
propagation algorithm, which consists of a forward and backward phase. During
the forward phase, the network’s output for the training sample is calculated
using its current weights. In the backward phase, the gradients of the loss
function are calculated with respect to the weights and used to update the
weights for the next training iteration. The backpropagation algorithm uses
the chain rule, which multiplies the partial derivatives of each node along a
path to the output and sums up all such paths of the network. The chain rule’s
result is the derivative of the output with respect to the weights [5].

Therefore, choosing an appropriate network architecture, loss function and
optimizer for a given task is crucial for a proper training of DNNs [6].

1.2.2 Loss Function

The loss function is one of the most important decisions to consider when
designing ANNs. The result of the loss function states how much a learned and
a target value differ.

A suitable choice for the loss function depends on the specific application and
the activation function. There are various different loss functions, but some are
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preferably used in combination with specific activation functions, for example,
linear activation functions are commonly used with squared loss [5].

In the field of ANNs, it is common to learn conditional distributions by training
with maximum likelihood. Therefore, the loss function is simply given by
the negative log likelihood (NLL), which is stated in equation 1.10. The loss
function for a specific parametric model pmodel is derived from the maximum
likelihood and can vary between different models. When it comes to designing
loss functions the total loss function used to train ANNs often consists of an
elementary loss function term for target-performance comparison and a second
term for regularization [6].

L(θ) = −Ex,y∼p̂data log pmodel(y|x) (1.10)

1.2.2.1 Binary Cross Entropy Loss

A common loss function for logistic regression is the cross-entropy (CE) loss.
Considering a classification task, a given observation x and an outcome y, the
CE loss is some measure of how good the classifier’s prediction ŷ is, compared
to y. If there are two different classes, it is referred to as binary classification
and the corresponding loss function is the binary cross-entropy (BCE) loss,
which is based on the Bernoulli distribution. This distribution has a binary
output: 1 with probability p and 0 with probability 1− p.

The probability output of the classifier for one observation x can be expressed
as:

p(y|x) = ŷy(1− ŷ)(1−y) where y = [0, 1], ŷ = [0, 1] (1.11)

The BCE loss is obtained by taking the logarithm of equation 1.11 for com-
putational simplification and changing the sign to negative to switch from a
maximization to a minimization problem [10]:

LBCE(ŷ, y) = −
[
y log ŷ + (1− y) log (1− ŷ)

]
(1.12)
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1.2.2.2 L1 Loss

The L1 loss calculates the mean absolute error (MAE) between all elements of
input x and target y [11]:

LL1(x, y) =
1

n

n∑
i=1

∣∣xi − yi∣∣ (1.13)

1.2.2.3 Kullback-Leibler Divergence

Considering two distributions p(x) and q(x), it is possible to express their
similarity with the Kullback-Leibler Divergence (KLD). If p(x) is some unknown
distribution and q(x) is used to approximate p(x), then the result of KLD
states how good the approximation is [12]:

DKL(p||q) = −
∫
p(x) log q(x)dx− (−

∫
p(x) log p(x)dx)

= −
∫
p(x) log

q(x)

p(x)
dx)

(1.14)

Important properties of KLD are on the one hand its non-negativity and on
the other hand its result being greater than zero, except if p(x) = q(x). There
is one aspect to be aware of: KLD can not be seen as a measure of distance,
because it is not a symmetrical metric DKL(p||q) 6= DKL(q||p) [12].

1.2.2.4 Perceptual Loss

Conventional CNNs (section 1.2.5) calculate a per-pixel loss between a ground
truth image and the network’s output. Johnson, Alahi and Fei-Fei show in [13]
how to calculate perceptual and semantic distinctions between images. They
define a feature reconstruction loss, shown in equation 1.15, which not only
compares an output with a ground truth but calculates image differences of
CNN layers of different network depths. It does not aim to minimize a per-pixel
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loss but tries to have a similar feature representation. According to them, it
is possible to compare high-level differences and preserve spatial structures.
They use a pre-trained VGG-16 [14] network φ, which is pre-trained on the
ImageNet dataset [15], as perceptual loss function. φj(x) indicates the feature
map of the j-th convolutional layer of the network φ, which has a dimension
of Cj ×Hj ×Wj. The ground truth is noted as y, while the output image is
noted as ŷ.

Lφ,jPercept(ŷ, y) =
1

CjHjWj

||φj(ŷ)− φj(y)||22 (1.15)

1.2.3 Parameter Optimization

The weights and biases of the ANNs are altogether referred to as parameters
θ, which are meant to be optimized by a chosen optimizer. There are several
different algorithms suitable for parameter optimization, which are based on
the gradient descent (GD) algorithm, which is described in section 1.2.3.1.

Learning rates are hyperparameters that are difficult to set and have a large
impact on the execution time of ANNs. In high-dimensional parameter spaces,
the loss function can be sensitive to some directions but insensitive to others.
Therefore, it can make sense to use individual adaptive learning rates for each
parameter [6]. The adaptive learning rate algorithms AdaGrad, RMSProp and
ADAM are described in sections 1.2.3.2, 1.2.3.3 and 1.2.3.4, respectively.

1.2.3.1 Gradient Descent

GD is an iterative optimization algorithm that is used to minimize the loss
by moving small steps in the direction of the negative gradient. There exist
different advanced variants of GD, but the most popular is stochastic gradient
descent (SGD) which is based on the stochastic approximation method by
Robbins in [16]. The mathematical requirement to use GD is that the loss
function is differentiable w.r.t its parameters [17].

The SGD algorithm updates the parameters by moving a small step in the
direction of the steepest descent, which is represented by the negative gradient
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of the loss function L(θ(τ)) with respect to the parameters. The step size is
controlled by the learning rate η, which can be only a positive number. The
parameter update of the SGD algorithm is specified by [12]:

θ(τ+1) = θ(τ) − η∇Li(θ(τ)), η > 0 (1.16)

L(θ) =
n∑
i=1

Li(θ) (1.17)

SGD updates the parameters on a single data sample i while batch GD, which
is a closely related GD method, takes all data samples at once into account. If
the number of used data samples is in the range between one and all samples,
then it is called minibatch gradient descent [6].

1.2.3.2 AdaGrad

AdaGrad is an adaptive learning algorithm described in [18]. The advantages
according to the paper are sparse solutions, naturally incorporated regularization
and better performance than non-adaptive methods. It is designed to converge
fast on convex functions.

AdaGrad adapts the learning rates per parameter. It keeps track of the history
of squared gradients. It updates the learning rates by scaling them inversely
proportional to the square root of accumulated previous gradients. AdaGrad
reduces the learning rates of the parameters appropriate to the value of their
partial derivatives of the loss function. Consequently, learning rates of parame-
ters with high partial derivatives are stronger reduced than the ones with lower
partial derivatives [6].

1.2.3.3 RMSProp

RMSProp is another algorithm for adaptive learning rates and is described by
Hinton in [19]. It is similar to AdaGrad with an adaption of how the history
of gradients is computed. In contrast to AdaGrad, which uses accumulation
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of the gradients, RMSProp applies exponentially decaying averaging and does
not take older gradients of the history into account. Therefore, it can converge
fast after locating a convex bowl. It is an effective algorithm and used in deep
learning projects [6].

1.2.3.4 Adaptive Moment Estimation

Adaptive Moment Estimation (ADAM) is used for stochastic optimization and
is gradient-based like SGD. ADAM is a first-order optimizer and its advantages
are memory and computational performance. It is also well suited for networks
with a large set of parameters. ADAM calculates parameter specific adaptive
learning rates based on the gradients’ first and second moments. The algorithm
combines the advantages of RMSProp and AdaGrad [17]. ADAM is a robust
algorithm concerning hyperparameter selection. [6].

1.2.4 Issues of Training

Training ANNs can be a complex task and some issues can arise. The source
of the issues can be versatile, ranging from using activation functions that
encourage vanishing or exploding gradients to training too complex models with
too little data. The next sections describe some common issues and describe
solutions to get them under control.

1.2.4.1 Overfitting and Underfitting

Considering an ANN trained and tested on training data and test data, respec-
tively, the performance between both sets will be different. The term overfitting
refers to the circumstance, that it is not ensured that a network will achieve
good results on the test set, although it is perfectly fit to the training data.
This difference in performance increases if a model with high capacity is trained
on a small dataset [5]. The overfitting effect is illustrated in the right model of
figure 1.3.

Another challenge in training neural networks is underfitting, which describes
the situation of an ANN not achieving a low enough training error on the
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dataset [6]. The underfitting effect is illustrated in the left model of figure
1.3.

Figure 1.3: All three models are fit to an example dataset. The left model is clearly underfitting
the training data and has a high error, while the right model has a low error and
perfectly fits the training data, but will not be able to perform well on unseen
data, due to overfitting. The model in the middle fits the training data well and
will also perform good on unseen data (from [6]).

Considering a simple model, the gap between training and generalization error
is small. However, it is desired to have a low training error and not just take a
simple model to have a low gap between these errors. Usually, with increasing
model capacity the training and generalization error decrease until the optimal
capacity is reached, which is indicated as underfitting zone. If the model gets
too complex, the generalization error rises again, which leads also to a higher
gap between training and generalization error, which describes the overfitting
zone [6]. Figure 1.4 illustrates the tradeoff between error and capacity.

1.2.4.1.1 Regularization

One technique to prevent the network from overfitting is regularization. The
network’s complexity can be regulated by adding a regularization term to
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Figure 1.4: The left side of the red line represents the underfitting zone with both errors
beeing high. The right side illustrated the overfitting zone, where the model
capacity is increased but the generalization gap also increases. The optimal model
capacity is described by the tradeoff between error and capacity when the training
error and generalization gap are low and the generalization error is at the lowest
level just before increasing again (from [6]).

the loss function. One such regularizer is the quadratic, also known as weight
decay:

L̃(w) = L(w) +
λ

2
wTw (1.18)

where λ controls the amount of regularization [12].

Minimizing L̃(w) results in a tradeoff between fitting the training data and
ensuring to keep the weights low. Regularization is only meant to affect the
generalization error, not the training loss [6].

There are various types of regularization, which serve different tasks. A com-
monly used regularization method is early stopping and is used to stop the
training process if the error on a held-out dataset starts to rise again. The
effect of this method is, that it regularizes the possible parameter space to be
in a close region to these of the initialization stage [5].
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1.2.4.1.2 Data Augmentation

In image segmentation tasks, a high amount of images is beneficial to successfully
train high-performance segmentation networks, which is rarely the case in the
domain of medical image segmentation.

Data augmentation solves this issue by applying different techniques to increase
the amount of data. With the help of augmentation techniques datasets are
filled with fake/synthetic data [6].

Data augmentation is a convenient way to lower the generalization error and
can be seen to be associated with preprocessing. The techniques related to
data augmentation are, for example, random translations and rotations of
images and are only applied to the training data [6]. It is important to mention,
that most of these (simpler) techniques can be performed during the training
process, due to not being computationally expensive. Further techniques can
be reflection, patch extraction or a computational extensive one like PCA
transformation. Despite of data augmentation reducing issues of overfitting,
the applied methods need to match the purpose of the ANNs. For example, it
will not make sense to additionally train with mirrored images on the MNIST
handwritten digits dataset [5]. Learning to detect a mirrored nine for example
does not make any sense in common scenarios.

1.2.4.2 Vanishing and Exploding Gradients

As mentioned in section 1.2.1, the backpropagation is done using the chain rule.
The drawback of this operation is a lack of stability of the gradient updates if
the network consists of many layers. Therefore, gradients of the earlier layers can
be extremely small, which is known as vanishing gradients, or extremely large,
which is known as exploding gradients. The effect of vanishing or exploding
gradients is common in DNNs. The origin of this issue is the chain-like product
calculation of derivatives. On the one hand, if the gradients are mostly lower
than 1 the products fall off exponentially along the chain and on the other hand,
if they are mostly higher than one, then the products rise exponentially. There
are activation functions that decrease such effects like ReLU with a gradient of
one for positive values, but also some which encourage such issues, for example
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a sigmoid activation function with a gradient lower than 0.25 and therefore
prone to vanishing gradients [5].

1.2.4.3 Computational Issues

Training ANNs on image data is a highly expensive computational task and can
take from many hours to weeks, due to the reason of datasets consisting of up
to millions of images. The runtime of these training processes can be decreased
with technological improvements, like the usage of Graphical Processor Units
(GPUs). Therefore, it is useful to work with machine learning frameworks that
have GPU support [5].

1.2.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specialized type of ANNs suitable
for processing grid-like data, like images. For this reason, CNNs are widely
used in image processing [6]. They are based on biological insights of image
processing in the visual cortex of cats by Wiesel and Hubel in [20], who figured
out elements of the brain’s processing on visual perception.

The problem with fully-connected neural networks and input data like images is,
that the number of weights can increase fast, which can lead to a high amount
of memory requirement. MLPs with a fully-connected first hidden layer with
several hundreds of neurons would need to learn already millions of weights,
considering a typical input image with ten thousands of pixels. A large number
of parameters results in a more complex model, which increases the size of
the needed training set [21]. In comparison to MLPs, in which weights are not
shared and only used once for an output, CNNs share weights across multiple
inputs. This means that the same element of a kernel is shared across all pixels
of the image, concerning image processing. Learning fewer parameters results
in a lower memory requirement and increased efficiency [6].

CNNs consist of different types of layers: convolution, pooling and fully-
connected layers. These layers can be repeatedly stacked on each other like in
the LeNet-5 architecture described in [21] and shown in figure 1.5.
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Figure 1.5: Example of a Convolutional Neural Network (CNN) representing the architecture
of LeNet-5, which consists of convolution, pooling (sub-sampling) and fully-
connected layers (from [21]).

1.2.5.1 Convolution Layer

The convolutional layer performs a convolution operation, which convolves an
input image I with a kernel K, which is, for example, in the two-dimensional
case described in the following formula [6]:

F (i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (1.19)

Convolving an input with a filter kernel results in a so-called feature map. The
convolution layer usually consists of several filter kernels each resulting in an
individual feature map. This enables to extract multiple features at the same
locations. A local receptive field describes the area of the input, which is used
for the extraction of visual features like edges and corners [21].

There are two important parameters of the convolution layer, which have an
impact on the feature map size: padding and stride. Padding refers to how the
kernel is moved across the border of the image. It is differentiated between valid,
half and full padding. Valid padding means the kernel is moved exactly across
the image, and therefore, the dimension is reduced compared to the input.
Considering a filter of size Fs, half-padding means, that (Fs − 1)/2 pixels are
added at the border of the image, which guarantees, that the spatial dimension
of the image is not changed. Full padding means, that the image is padded with
Fs − 1 pixels, which leads to an increase of the output dimension compared to
the input. The stride parameter enables to decrease the output dimension of
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the convolution. A stride s of one means, that the kernel is moved by one pixel
and the spatial dimension is unchanged. The spatial dimension is reduced by
approximately s for s > 1. Strides larger than two are rarely used [5].

An example of a convolution operation of an RGB input image (32x32x3) with
multiple kernels, with padding and stride of one, can be seen in 1.6. The filter
kernel (5x5x3) is slid over the whole image at each location the convolution is
performed. The result of the convolution of the input image with one kernel
results in a feature map of 32x32x1. In this example, ten filter kernels are used,
which results in an output volume of 32x32x10 consisting of ten feature maps
[22].

Figure 1.6: Convolving an RGB input image of 32x32x3 with a kernel of 5x5x3 with padding
and stride of one results in a feature map of 32x32x1. Considering ten filter
kernels, the convolution layer results in a volume of 32x32x10, representing the
feature maps (from [22]).

After the convolution layer a nonlinear activation function, for example a ReLU
activation function, is applied to the output [6].

1.2.5.2 Pooling Layer

The pooling or sub-sampling layer performs a local operation in a defined
window, which reduces the dimensions of feature maps. Furthermore, the
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sensitivity to feature shifts and distortions is lowered [21]. The most popular
pooling operations are average-pooling (used, for example, in the LeNet-5
architecture), which calculates the average of the window’s elements and max-
pooling, which computes the maximum value of the window’s elements. Similar
to the convolution layer a stride parameter defines the step size of the sliding
window [5].

1.2.5.3 Fully Connected Layer

The fully connected layer is equal to those in conventional feed-forward networks
and connects all neurons of a layer with those of a consecutive layer. CNNs can
consist of multiple fully connected layers [5]. The last fully connected layer is
then connected to the output layer. The structure of the output layer depends
on the task.

1.2.5.4 Transposed Convolution Layer

Convolution layers can be used in a way that leads to a decrease in spatial
dimensionality. The opposite effect can be accomplished by either using upsam-
pling layers or transposed convolution layers. Both layers lead to an increase in
dimensionality. The difference between these two layers is that upsampling is
done by interpolation without learned parameters and transposed convolution
learns parameters during the training process. It is important to note that
transposed convolutions are not an inverse transformation of convolutions on
a value basis, but in dimensionality. Transposed convolution layers swap the
forward and backward pass in comparison to common convolutional layers
[23].

1.2.6 Autoencoder

The basic idea of an autoencoder is to reconstruct the given input. An autoen-
coder consists of an encoder function, a latent space and a decoder function, as
shown in figure 1.7. While the encoder function h = f(x) learns to represent
the input data, the decoder function x′ = g(f(x)) tries to reconstruct the input
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from the encoder’s output. The autoencoder network is regularized to prevent
it from just copying the input to the output. This is achieved by constraining h
to be of a smaller dimension than the input x. When training an autoencoder
the latent space mapping is learned, which captures the most salient features
in the input data. This bottleneck layer captures a compressed representation
of the more complex input data and is represented by the nodes in the green
rectangle of figure 1.7. Training an autoencoder is performed by minimizing a
loss function L(x, g(f(x)) [6].

Figure 1.7: Basic scheme of an autoencoder with a single hidden layer.

Due to these optimization steps, the weights of the encoder and decoder struc-
tures are changed. The final reconstruction resembles the input data, however,
this reconstruction of the compressed latent space is lossy. Autoencoders are fun-
damental networks of unsupervised learning tasks. Some example applications
are dimensionality reduction, outlier detection or de-noising [5].

1.2.7 Variational Autoencoder

The basic structure of variational autencoders (VAEs) resembles that of classic
autoencoders: both consist of an encoder and decoder structure. The main

19



difference between both networks is located in the latent space. This section is
based on the works of Kingma and Welling in [24] and [25]. The VAEs regularize
the latent space in a probabilistic way. The latent space of VAE consists of
one layer representing standard deviations and a second one representing the
means.

Figure 1.8: Graphical model of the variational autoencoder’s latent variable z and observed
variable x representing the data. The generative model pθ(x|z)pθ(z) is illustrated
by solid lines, while the dashed lines represent the posterior approximation qθ(z|x)
with variational inference (from [24]).

In the probabilistic graphical model in figure 1.8, x identifies the observed
variable, which represents the input data and z denotes the latent variable,
which is assumed to be drawn from a Gaussian prior distribution with zero
mean and identity covariance matrix:

pθ(z) = N (z;0, I) (1.20)

where θ denotes the generative model parameters. Subsequently, the data x
is sampled from the conditional likelihood distribution pθ(x|z). Considering
the VAE’s scheme in figure 1.9, pθ(x|z) is also referred to as the probabilistic
encoder, whereas pθ(z|x) is the posterior distribution and referred to as the
probabilistic decoder. The likelihood function models the distribution of z given
a data sample x, while the posterior models the distribution of the potentially
related data sample x given an encoded latent representation z.

The relations of the mentioned distributions are explained by the Bayes theo-
rem:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
=

pθ(x|z)pθ(z)∫
z
pθ(x|z)pθ(z)dz

(1.21)
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Figure 1.9: Basic scheme of a variational autoencoder. The output of the encoder acts as
input of a µ and logσ2 layer. The latent space samples latent variables z as in
equation 1.23.

Theoretically, if pθ(z) and pθ(x|z) are known, then pθ(z|x) could be calculated
with the use of the Bayes theorem. Due to the integral of the marginal likelihood
pθ(x) becoming intractable in high dimensions, the Expectation-Maximization
(EM) algorithm cannot be used for parameter estimation and an approximation
of the posterior distribution pθ(z|x) by qφ(z|x) is needed. This approximation
of the posterior is achieved with variational inference. φ denotes the variational
parameters in qφ(z|x).

Optimizing VAEs means optimizing the evidence lower bound (ELBO), which
is typically derived by Jensen’s inequality. Kingma and Welling show a repa-
rameterization trick on the variational lower bound L(θ,φ;x(i)), which results
in an estimator, which can be optimized using standard stochastic gradient
methods. The resulting stochastic gradient variational bayes (SGVB) estimator
for data sample x(i) is:

L(θ,φ;x(i)) = −DKL(qθ(z|x(i))||pθ(z)) +
1

L

L∑
l=1

(log pθ(x
(i)|z(i,l)))

where z(i,l) = gφ(ε(i,l),x(i,l)) and ε(l) = p(ε)

(1.22)

The first term on the right side is the Kullback-Leibler divergence (KLD), which
acts as regularizer and constrains the approximate posterior to be in close
range to the prior pθ(z), while the second term can be seen as reconstruction
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error. Considering the KLD term, it is assumed, that both distributions, the
posterior and prior are Gaussian. This leads to the possibility to analytically
calculate the KLD term, as shown in formula 1.24. The function gφ(·) performs
a mapping of the data sample x and random noise vector ε(l) in a way, that
z(i,l) can be sampled from the approximate posterior distribution qθ(z|x(i)).

There is a problem with the described random sampling because the random
variable z is not differentiable. Therefore, the required back-propagation is not
possible [5]. The before mentioned reparameterization trick is the solution to
this shortcoming. Kingma and Welling propose a valid reparameterization of

z = µ+ σ · ε, for z ∼ p(z|x) = N (µ, σ2). (1.23)

This reparameterization changes z to a function of x and φ which is now
differentiable and deterministic, because the randomness is added by a separate
random variable ε. This enables the required back-propagation of the loss. A
graphical model of the reparameterization trick is shown in figure 1.10.

This leads to the following loss function for VAEs:

L(θ,φ;x(i)) =
1

2

J∑
j=1

(1 + log((σ
(i)
j )2)− (µ

(i)
j )2)− (σ

(i)
j )2)︸ ︷︷ ︸

KLD

+
1

L

L∑
l=1

(log pθ(x
(i)|z(i,l)))

where z(i,l) = µ(i) + σ(i) · ε(i) and ε(l) ∼ N (0, I)

(1.24)

1.3 Image Segmentation

Image Segmentation is a complex task and describes the procedure of splitting
an image into regions of equal properties. Such homogeneous regions can be of
the same brightness, contrast, color or gray-level. Medical image segmentation is
used, for example, to analyze anatomical structures or locate regions of interest
like tumors. It is difficult to automatically segment medical images due to the
complexity of such images and additional artifacts. Some examples of common
artifacts are motion artifacts, which are often related to scans of the thorax
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Figure 1.10: In the original form a back-propagation is not possible due to the not differ-
entiable random variable z. The proposed reparameterization trick by Kingma
and Welling introduces a new random variable epsilon. Z is now a function of
φ and x and becomes differentiable and deterministic due to the shift of the
random source (from [25]).

(due to breathing), noise artifacts, ring artifacts or intensity inhomogeneity
[26].

The following methods are related to medical image segmentation of computed
tomography (CT) or magnetic resonance imaging (MRI) scans and adapted
from [26]. They can be roughly divided into methods based on gray level
features, texture features as well as model, atlas and neural networks-based
segmentations.
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1.3.1 Gray Level Features based Segmentation

This set of methods segment images based on gray level information. They
can be further divided into segmentation based on amplitude, edge-based
segmentation and region-based segmentation.

1.3.1.1 Amplitude Segmentation

This methods are based on histogram information of images. A common method
is thresholding, either based on histogram features or gray levels. This method
is quite simple in the case of an image consisting of a single object and
a background, which is represented by a bi-modal histogram. This results
in a segmentation of the image into object and background. For a proper
segmentation the threshold value needs to be chosen carefully. Multi-object
segmentation is also possible if the objects differ in gray levels.

1.3.1.2 Edge-based Segmentation

Edge-based segmentation methods are based on the idea that edges represent
boundaries between different objects. Therefore, these methods detect edges
first, then perform a thresholding on the found edges and finally segmenting
the images with the obtained boundaries. Problems arise with noise and weak
edges, which can impact the final segmentation result.

1.3.1.3 Region-based Segmentation

These methods analyze the images for homogeneous regions and create clusters
out of the corresponding pixels. The property used when deciding about similar-
ities is the gray level. Three different types of region-growing algorithms exist:
region merging, region splitting and split and merge. Issues and limitations of
region growing algorithms can be under and over segmentation. One solution
to this behaviour is to combine edge-based segmentation with region-based
segmentation, which can improve the accuracy of an overall segmentation.
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1.3.2 Methods based on Texture Features

This group of methods performs segmentations based on different textures
in an image. These textures can differ in tone and structure, can be fine or
coarse. There exist three different approaches: statistical approaches, syntactic
or structural approaches and spectral approaches. The statistical approaches
are useful for random and complex textures, however, the syntactic or structural
approaches can lead to better segmentation results. Spectral approaches can
be robust, however, are often not very efficient.

1.3.3 Model-based Segmentation

This method is based on the idea that structures like organs are similar in
shape and geometry across different patients, although with some variations.
This variations can be probabilistically described. Model-based segmentation
methods are active shape and appearance models, deformable models and
level-set-based models.

1.3.4 Atlas-based Segmentation

This segmentation method describes all properties regarding a targeted anatomy
as an atlas or lookup table (LUT). Properties like the shape and size of organs,
bones and soft tissues are encoded in such an atlas. The limitations of atlas-
based segmentations are segmentations of complex structures with a variability
of these properties.

1.3.5 Neural Networks-based Segmentation

Although, some of the methods mentioned before can produce reasonable
segmentation results, image segmentation is mostly done with neural networks
nowadays, because of their fully-automatic nature, requiring also no (manual)
parameter adaptions. Deep learning had a big impact on the performance and
results of such automatic methods. Image segmentation ANNs can be split
into semantic segmentation and instance segmentation. Semantic segmentation
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tries to separate a foreground object from a background, for example, a horse
from the meadow. Instance segmentation, on the other hand, tries to find all
instances of an object and individually segment them.

In semantic segmentation, there exist several well-known networks in the
community. Some notable works are, for example, CNN-based networks like
FCN [27], DeepLab [28], AlexNet [29] or encoder decoder structured networks
like U-Net [30]. One of the well-known instance segmentation networks is Mask
R-CNN [31].

1.4 PyTorch

PyTorch is an open source machine learning framework for Python, which also
integrates with libraries like NumPy and SciPy. Furthermore, high computa-
tional tasks can be accelerated due to its CUDA integration. The following
sections explain the basic structure and concepts of PyTorch and are adapted
from the PyTorch documentation [32].

1.4.1 Torchvision

A major package of PyTorch is called Torchvision, which is a collection of
datasets, models and useful image transformations. Amongst others, it includes
the VGG model already mentioned in section 1.2.2.4.

1.4.2 Torch

This package contains the fundamental data structures called tensors for storing
data, tensor operations and much more utility functionality. It provides the
fundamental neural network layers, for example convolutional layer and pooling
layer, which are located in the module torch.nn. There is a specific torch.cuda
package, which enables to shift computations onto a GPU.
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1.4.3 Tensors

Tensors are the way PyTorch stores and transfers data between operations.
They are multi-dimensional matrices that can be either stored as CPU or GPU
tensors. PyTorch offers the most common tensor types with different sizes, for
example, integer, floating point and boolean. The tensor types range from 8 to
128 bit.

1.4.4 Training a neural network in PyTorch

Training a basic neural network in PyTorch needs at first a defined and read in
dataset. Therefore, PyTorch provides a package TORCH.UTILS.DATA, in which
a Dataset and Dataloader class are located. These classes handle settings,
like batch size, data shuffling and more. Furthermore, a network needs to be
defined. A network can be inherited and extended from the Module class in the
package TORCH.NN or an already pre-defined one can be chosen. Additionally,
an optimizer needs to be chosen. PyTorch provides some optimizers in the
package TORCH.OPTIM. Finally, the training process needs to be implemented.
A basic classifier example of the PyTorch Documentation is shown in figure
1.11. While looping over the batches of the dataloader the optimizer’s gradients
need to be reset to zero in each iteration. Subsequently, the input is passed to
the network and a loss is calculated between the result and some ground truth
labels. The final steps are back-propagating the loss with loss.backward()

and updating the network’s parameters with optimizer.step().

1.5 CUDA

CUDA (Compute Unified Device Architecture) is a platform developed by
Nvidia that enables software developers to use Nvidia GPUs for complex
parallel computations [34]. Therefore, GPUs of Nvidia are used in the fields
of deep learning to offer the opportunity to train large ANNs. PyTorch has
integrated CUDA support with the TORCH.CUDA package [35], which enables
easy usage of the GPU without the need of many instructions.
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Figure 1.11: A PyTorch example for the training of a basic classifier (reproduced from [33]).
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