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ABSTRACT 

In this paper we present an efficient algorithm for the segmentation of the inner and outer boundary of thoratic and 

abdominal aortic aneurysms (TAA & AAA) in computed tomography angiography (CTA) acquisitions. The aneurysm 

segmentation includes two steps: first, the inner boundary is segmented based on a grey level model with two thresholds; 

then, an adapted active contour model approach is applied to the more complicated outer boundary segmentation, with its 

initialization based on the available inner boundary segmentation. An opacity image, which aims at enhancing important 

features while reducing spurious structures, is calculated from the CTA images and employed to guide the deformation 

of the model. In addition, the active contour model is extended by a constraint force that prevents intersections of the 

inner and outer boundary and keeps the outer boundary at a distance, given by the thrombus thickness, to the inner 

boundary. Based upon the segmentation results, we can measure the aneurysm size at each centerline point on the 

centerline orthogonal multiplanar reformatting (MPR) plane. Furthermore, a 3D TAA or AAA model is reconstructed 

from the set of segmented contours, and the presence of endoleaks is detected and highlighted. The implemented method 

has been evaluated on nine clinical CTA data sets with variations in anatomy and location of the pathology and has 

shown promising results. 

Keywords: Segmentation and Rendering, Validation, Diagnosis, Abdominal Procedures, Aneurysm 

 

1. INTRODUCTION 

Cardiovascular diseases are the number one cause of death in the US and most European countries. Among these 

diseases, abdominal aortic aneurysm (AAA) is the 13th leading cause of death in the western world. 

Endovascular aneurysm repair (EVAR) is a modern treatment alternative for aortic aneurysms which yields results 

comparable to classical open surgery
1, 2

. During EVAR, physicians deploy an endovascular stent graft in the aneurysm to 

replace and strengthen the weak aorta wall. However, incomplete exclusion of an aneurysm due to stent shift or 

deformation results in endoleaks: the leakage of blood around the stent graft and within the aneurysm sac. Endoleaks 

may cause continued pressurization of the aneurysm sac, which again increases the risk of aorta rupture. 

To prevent further risks after EVAR and to determine the response of the aneurysm to the implanted stent graft, patients 

are required to take regular computed tomography angiography (CTA) scans of the abdominal region during the follow-

up period. CTA can be very useful for obtaining exact knowledge of the position, shape, and size of the aneurysm and 

stent graft, and the occurrence of endoleaks. In practice, most of the aneurysm volume assessment is obtained by manual 

delineation slice by slice, which is laborious and non-reproducible. This paper presents an efficient algorithm for 

segmenting the inner and outer boundary – namely the lumen and thrombus boundary – of aneurysms in CTA images 

(Fig 1). Based on this segmentation, the aneurysm size, which is an important indicator for the risk of a rupture12, can be 

measured on each MPR plane that is set orthogonal to the lumen centerline. Furthermore, a 3D model of the aneurysm 

can be reconstructed and visualized, and endoleaks can be detected. 
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Several algorithms have been proposed to support clinicians with the evaluation of CTA scans during stent planning
3, 4, 5

 

and follow-up
6
. De Bruijne et al.

6
 have presented a method for segmenting tubular structures based on active appearance 

models (AAM) and have applied it to AAA segmentation. Spreeuwers et al.
7
 have introduced an approach to segment the 

epi- and endocard with the help of two ACMs and a constraint to keep the contours at a certain distance. 

The method presented in this paper is based on the approach introduced by De Bruijne et al.6 and applies it to TAA and 

AAA. Based on the segmentation results, the algorithm measures the size of the aneurysm for each centerline-orthogonal 

MPR plane and detects endoleaks in the thrombus volume. Furthermore, it reconstructs a 3D aneurysm model from the 

set of segmented contours and highlights the presence of endoleaks in 2D slices to attract the physician’s attention. 

Compared to AAMs, our method does not require intensive training of a point distribution and texture model. The results 

obtained with the proposed method demonstrate the possibility of achieving efficient and precise segmentation of AAA 

and TAA thrombus and lumen. 

The paper is organized as follows. Section 2 presents the details of the proposed method. Section 3 discusses the results 

of our experiments. Section 4 concludes the paper. 

 

Fig. 1. Left: Postoperative CT-scan of a TAA stent graft (top) and an AAA stent graft (bottom). Right: Inner (Lumen) and 

outer (Thrombus) aneurysm boundary on a MPR plane of a TAA (top) and an AAA (bottom). The bright spots around 

inner contours are the metal parts of the stent grafts. Additionally, the maximum diameters of the outer contours are 

drawn. 



 

 
 

 

2. METHODS 

2.1 Segmentation of the Lumen Boundary 

This paper extends our methods from previous work
8
. At first, the lumen centerline is determined by a vessel tracing 

method based on Dijkstra’s shortest path algorithm
9, 10

. Then, the inner contours of the aneurysm are obtained by 

geometrical construction and 1D image processing. For this purpose, rays are sent out radially with equal angular 

spacing on centerline orthogonal planes (Fig. 2.), which are defined by the equidistant centerline points and the local 

centerline tangent vectors. The ray propagation stops as soon as the intensity value is below a threshold θ1. Additionally, 

this set of initial contours defined by the end points of the ray propagation is regularized using a simple threshold based 

3D ACM approach. 

 

 

Fig. 2. Top: Equal angular spaced rays (δ) propagate from the centerline point in a MPR slice. Bottom: Intensity profile from 

the center point along direction x; the threshold θ1 is defined as the lower threshold to detect the lumen boundary. 

Thresholding, even with adapted θ2, is usually not sufficient for detecting the weak thrombus boundary. 

 

2.2 Segmentation of the Thrombus Boundary 

The outer boundary of an aneurysm is segmented by an adapted 3D ACM approach. The ACM is initialized by dilating 

the inner contours to positions near the outer boundary. It is then deformed by internal and external forces to reveal the 

weak and sometimes incompletely imaged thrombus boundaries. The definition of the ACM’s external energy for the 

outer contour segmentation is based on opacity images
11

, which are calculated from the CTA image. An opacity image 

includes the information of both intensity value and gradient magnitude of a local point, aiming at enhancing important 

features while reducing spurious structures (Fig. 3). 

The image force at a point 
3

R∈v  is calculated by convolving the opacity image )(xα  with the derivative of a 

Gaussian kernel σ'G  along a ray from the centerline point through v : 

 )(*)( '
vv ασGFimage =  (1) 

σ is the standard deviation of the Gaussian kernel. It is reduced during the ACM deformation, leading to a multi-scale 

approach. 

Additionally, a constraint force is employed, based on the local average distance between the inner and outer contour, to 

approximate a smooth boundary at positions where the opacity image has almost no information due to neighboring 

tissues with similar contrast: 

 ( ) )()()()( min vnvvv Nconcon ddwF −=  (2) 



 

 
 

 

Here, conw is a constant positive weighting parameter, )(min xd  represents the shortest distance from point x  on the 

outer contour to the inner contour, )(xNd  is the average distance between two corresponding points on outer and inner 

contour in a local neighborhood of x , and )(xn  is the inward unit normal at x. 

 

 

Fig. 3. Left: CTA slice containing AAA with implemented stent. Middle: Gradient image of the CTA slice with strong 

gradients in the lumen, stent metal markers and endoleak boundary. Right: Opacity image of the CTA slice where the 

strong misleading gradients are reduced or eliminated. 

 

2.3 Aneurysm Measurement 

As pointed out by Czermak et al.
12

, the size of the aneurysm is an important indicator for the risk of a rupture. Therefore, 

two reproducible parameters are calculated from the outer boundary: the maximum aneurysm diameter Dmax and the 

maximum aneurysm cross-sectional area Amax. These two parameters are measured on each MPR plane perpendicular to 

the lumen centerline, which in general is more accurate than measuring on the original axial 2D slices due to the curved 

vessel. 

2.4 Endoleak Detection 

To detect endoleaks that are visible due to the contrast agent, the existence of a cluster of voxels for which the intensity 

values are above a threshold θ in the thrombus volume of CTA images is determined. 

 

 

Fig. 4. Left: Bifurcated stent graft (white arrow). Middle: Slice with lumen (L), thrombus (T), stent graft (bright spots 

around lumen), endoleaks (white arrow) and neighboring structures. Right: Segmented thrombus volume with potential 

endoleaks around stent graft (white arrows). 



 

 
 

 

A thrombus mask for analyzing HU intensities in the thrombus region is obtained by subtracting the lumen mask 

(rendered by voxelization of the triangulated inner contour) from the aneurysm volume (rendered by voxelization of the 

triangulated outer contour). Additionally, the metal markers of the stents and boundary voxels with high intensities due 

to the partial volume effect (PVE) have to be removed. Therefore, voxels whose intensity values are higher than a 

predefined metal threshold θs are marked in a binary stent mask. In order to eliminate remaining PVE voxels and get the 

desired volume, the binary stent mask is dilated and subtracted from the thrombus volume. Finally, intensity values that 

are greater than θ and still appear in the thrombus mask are candidates for occurring endoleaks (Fig. 4). 

 

3. RESULTS 

For our evaluation, the methods were implemented in MeVisLab
1
. Nine different clinical data sets were segmented (7 

AAA scans and 2 TAA scans). Manual segmentations of the thrombus boundary were obtained by two trained observers 

and checked by a radiologist. The contours drawn manually on each slice were used to reconstruct a 3D surface and 

volume. The surface was used to generate an Euclidean distance map and the volume was used to create a binary mask. 

The surface and binary mask were adopted as the reference segmentation for the evaluation. Table 1 and Fig. 5 

summarize the results obtained from the experiments for 9 scans; Fig. 6 and Fig. 7 show the segmentation results for a 

TAA and an AAA at different centerline positions. 

 

Table 1. Summary of results: mean µ, standard deviation σ, minimum and maximum values for 9 scans. Di  is the 

segmentation distance error and DSC is the Dice Similarity Coefficient. 

Measure µ  ± σ [min, max] 

Mean segmentation error (µDi, mm) 1.62 ± 1.03 [0.06, 3.22] 

Maximum distance (maxi Di, mm) 8.04 ± 4.66 [2.01, 16.3] 

Di < 1 mm (% vertices) 56.5 ± 26.8 [21.4, 98.9] 

Di < 2 mm (% vertices) 74.6 ± 20.9 [39.9, 100] 

 
Case 1 2 3 4 5 6 7 8 9 

DSC 94.9 96.4 98.5 87.8 95.3 94.3 91.0 89.7 93.7 

 

 

Fig. 5. Left: the Dice Similarity Coefficient (DSC) for 9 scans. Right: Segmentation error (Di in mm) for 9 scans. For Di: 

maximum (bars), mean (dots connected by lines) and standard deviation (vertical lines inside). 

 

                                                 
1 MeVisLab, Software for Medical Image Processing and Visualization, http://www.mevislab.de 



 

 
 

 

 

Fig. 6. Segmentation results of a TAA. Images (a) - (e) illustrate the segmented outer contour (Thrombus) and the inner 

contour (Lumen) on five different MPR planes. Image (f) visualizes the 3D aneurysm model with the outer boundary. 

 

 

Fig. 7. Segmentation results of an AAA. Images (a) - (e) illustrate the segmented outer contour (Thrombus) and the inner 

contour (Lumen) on five different MPR planes. Image (f) visualizes the 3D aneurysm model with the outer boundary. 



 

 
 

 

4. CONCLUSIONS 

In this paper, an efficient algorithm for the segmentation of the inner and outer boundary of thoracic and abdominal 

aortic aneurysms in CTA acquisitions was presented, which saves analysis time and increases the reproducibility in 

treatment examination. Based on the segmentation, the aneurysm size was measured for each centerline-orthogonal MPR 

plane, and endoleaks were detected in the thrombus volume. Both indicate the risk of aneurysm rupture after an EVAR 

treatment. Furthermore, a 3D aneurysm model was reconstructed from the set of segmented contours, and the presence of 

endoleaks was highlighted in 2D slices to attract the physician’s attention. Results obtained with the proposed method 

demonstrate the possibility of achieving efficient and precise segmentation of AAA and TAA thrombus and lumen. 

Thus, the method is an efficient alternative to manual segmentation and is useful for the measurement of AAA and TAA 

volume, allowing the assessment of aneurysm rupture risk in a more convenient manner. 
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