
Preoperative Volume Determination for Pituitary Adenoma 

Dženan Zukića *, Jan Eggerb, c, Miriam H. A. Bauerb, c, Daniela Kuhntb, Barbara Carlb 

Bernd Freislebenc, Andreas Kolba and Christopher Nimskyb 

a University of Siegen, Computer Graphics Group, Hölderlinstrasse 3, 57076 Siegen, Germany; 
b University of Marburg, Department of Neurosurgery, Baldingerstrasse, 35033 Marburg, Germany; 
c University of Marburg, Department of Mathematics and Computer Science, Hans-Meerwein-Str. 3, 

35032 Marburg, Germany; 

ABSTRACT 

The most common sellar lesion is the pituitary adenoma, and sellar tumors are approximately 10-15% of all intracranial 

neoplasms. Manual slice-by-slice segmentation takes quite some time that can be reduced by using the appropriate 

algorithms. In this contribution, we present a segmentation method for pituitary adenoma. The method is based on an 

algorithm that we have applied recently to segmenting glioblastoma multiforme. A modification of this scheme is used 

for adenoma segmentation that is much harder to perform, due to lack of contrast-enhanced boundaries. In our 

experimental evaluation, neurosurgeons performed manual slice-by-slice segmentation of ten magnetic resonance 

imaging (MRI) cases. The segmentations were compared to the segmentation results of the proposed method using the 

Dice Similarity Coefficient (DSC). The average DSC for all datasets was 75.92%±7.24%. A manual segmentation took 

about four minutes and our algorithm required about one second. 
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1. INTRODUCTION 

Approximately 10-15% of all intracranial neoplasms are sellar tumors. The most common sellar lesion is the pituitary 

adenoma1,2. The lesions can be classified according to size or hormone-secretion (hormone-active and hormone-

inactive). Microadenomas are less than 1 cm in diameter, whereas macroadenomas measure more than 1 cm. The rare 

giant-adenomas have more than 4 cm in diameter. 

Secreted hormones can be cortisol (Cushing's disease), human growth hormone (hGH; acromegaly), follicle-

stimulating hormone (FSH), luteinising hormone (LH), thyroid-stimulating hormone (TSH), prolactine, or a combination 

of these. Only for the prolactine-expressing tumors, a pharmacological treatment is the initial treatment of choice in form 

of dopamine-agonists. Treatment is most commonly followed by a decrease of prolactine-levels and tumor volume. For 

acromegaly and Cushing's disease, surgery remains the first-line treatment, although somatostatin receptor analogues or 

combined dopamine/somatostatin receptor analogues are a useful second-line therapeutical option for hGH-expressing 

tumors. Current medical therapies for Cushing's disease primarily focus on the adrenal blockade of cortisol production, 

although pasireotide and cabergoline show promise as pituitary-directed medical therapy for Cushing's disease. 

Thus, not only for the most hormone-active, but also for hormone-inactive macroadenomas with mass-effect, surgery 

is the treatment of choice, most possibly via a transsphenoidal approach3. For hormone-inactive mircroadenomas (<1cm) 

there is no need for immediate surgical resection. The follow-up contains endocrine and ophthalmological evaluation as 

well as magnetic resonance imaging (MRI). In case of continuous tumor volume progress, microsurgical excision is the 

treatment of choice. Thus, the tumor volume should be tracked over the time of the follow-up. 

In this contribution, we present a segmentation method for pituitary adenomas. The method is based on an algorithm 

we recently developed for segmenting glioblastoma multiforme (GBM)4. 

The paper is organized as follows. Section 2 discusses related work. Section 3 presents the details of the proposed 

approach. Section 4 discusses experimental results and concludes the paper. 
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2. RELATED WORK 

Several algorithms have already been proposed for segmenting brain tumors in MRI (magnetic resonance images). A 

relatively recent overview of some deterministic and statistical approaches is given by Angelini et al.5. Most of these 

approaches are region-based; more recent ones are based on deformable models and include edge-information. 

Neubauer et al.6 and Wolfsberger et al.7 introduce STEPS, a virtual endoscopy system designed to aid surgery of 

pituitary tumors. STEPS uses a semi-automatic segmentation method that is based on the so-called watershed-from-

markers technique. The watershed-from-markers technique uses manually defined markers in the object of interest and 

the background. A memory efficient and fast implementation of the watershed-from-markers algorithm – also extended 

to 3D – has been developed by Felkel et al.8. 

Descoteaux et al.9 have proposed a novel multi-scale sheet enhancement measure and have applied it to paranasal 

sinus bone segmentation. The measure has the essential properties to be incorporated in the computation of anatomical 

models for the simulation of pituitary surgery. 

Egger et al.10 have recently presented a graph-based method for pituitary adenoma segmentation. The method starts 

by setting up a directed and weighted 3D graph from a user-defined seed point that is located inside the pituitary 

adenoma. To set up the graph, the method samples along rays that are sent through the surface points of a polyhedron 

with the seed point as the center. After graph construction, the minimal cost closed set on the graph is computed via a 

polynomial time s-t cut11. 

3. METHOD 

The proposed method is initialized by an approximate outline on a slice near the center of the tumor, which is drawn by 

the user (Figures 1 and 2). From this user input the following initial information is obtained: 

 

1. Center of the tumor: The X and Y coordinates are 

calculated as the center of boundary-enclosed area, and the 

Z coordinate is the index of the selected slice. 

 

2. The minimum and maximum intensities of voxels of 

interest: Intensities of interest are all those within the 

boundary on the selected slice, ignoring the few highest 

and lowest percent in order to account for noise. 

 

3. The average “radius”: The average distance from the 

center to the boundary of a sphere-like object is a 

dimensionality-invariant measure – it is the same in 2D 

(slice) and 3D (whole volume), e.g. the radius of a circle is 

equal to the radius of the sphere made by rotating that 

circle around its diameter. 

 

The algorithm starts with a small triangular surface mesh, i.e. a 

triangulated cube that turns into a sphere after a few iterations, at 

the approximate center of the tumor. This mesh is enlarged using 

balloon inflation forces12, enforcing a star-shaped† geometry. Since 

the vertices are moved only into regions with an intensity of 

interest, the mesh is not inflated beyond the glioma boundary. The 

segmentation is finished when the user-initialized “radius” is reached, or when the maximum number of iterations is 

exceeded (if the segmentation has converged sooner than estimated). 

                                                           
† A star-shaped object is an object in which a point (the center) exists that can be connected with every surface point by a straight-line 

segment, and all points of those straight-line segments lie entirely within the object. A star is a representative 2D example of this class 

of objects. All convex objects are also star-shaped objects (but not vice versa). 

 

Fig. 1: An example of an initialization, shown in 

yellow. 



   

   

   

Fig. 2:  User initialization (yellow outline) superimposed onto nine magnetic resonance imaging acquisitions of pituitary adenoma 

datasets that have been used for evaluation of the proposed method (the tenth is shown in Figure 1). 

 

The following steps are performed iteratively: 

 

1. Split polyhedron edges that are S times longer than mean voxel spacing (geometrical mean of spacing in X, Y 

and Z direction). We used S=2.95. This parameter influences the smoothness of the mesh, as well as precision 

and speed of the segmentation, and it is thus a tuning parameter. S should not be smaller than the voxel spacing, 

since this would waste computing power and counteract the smoothness enforcement (see steps 3 and 4). 

 



2. Compute per-vertex surface normals and curvature estimates. Since we use a relatively large S, we can estimate 

the curvature relying on the 1-neighborhood of the vertex. With smaller S, the curvature estimate should rely on 

larger vertex neighborhoods. 

 

3. Move vertices outwards (inflate the mesh): 

 

a. Surface orientation: Take into consideration the cosine of the angle (φ) between center-vertex vector 

(
cvd ) and surface normal vector (

vn ) for each vertex. The greater the angle, the lower the inflation 

speed. This slows down the inflation when the mesh starts adapting to the shape of the boundary. 

 

b. Surface curvature: The higher the curvature, the lower the inflation speed, thus the inflation speed is 

lower for vertices near feature points (ridges, valleys, peaks and dents). 

 

c. If a vertex can be moved, it is moved in the direction of center-vertex vector (thus maintaining the star 

shape). The vertex cannot be moved if the destination voxel has intensity outside the range of interest 

(contents of the user-drawn boundary). Otherwise, if the destination voxel intensity is higher than or 

close to the maximum intensity this vertex has encountered recently, the vertex can be displaced. This 

favors more common boundaries with lower intensity surrounding tissues. The displacement amount is 

adjusted by inflation speed factor (Figures 3 and Figure 4). 

 

4. Smooth the surface of the polyhedron slightly. This is required to overcome noisy voxels, which would 

otherwise prevent inflation of the mesh beyond them, even if they are in the middle of the tumor. This way we 

do not need to denoise the input dataset, which is a computationally expensive operation. We also know that the 

surface of the tumor is smooth. 

 

  

Fig. 3:  Mesh properties relevant for movement of each vertex. Fig. 4: Effect of moving a vertex outwards. 

 

4. RESULTS AND CONCLUSION 

The presented approach was realized in C++ and the automatic segmentation in our implementation took about one 

second per dataset (about 30 seconds including the time it takes to locate the file, draw an outline, execute segmentation 

and extract a marching cubes isosurface) on an Intel Core i7-920 CPU (2.66 GHz) with a GeForce 8800GTX graphics 

card on Windows7 x64. The evaluation set consisted of eight T1 weighted and two T2 weighted images. 9 images had a 

slice resolution of 512x512 (and between 13 and 80 slices), and one had a resolution of 256x256x160. Note that the 

increase of the size in image regions unrelated to the tumor (scan of entire head instead of only the segment that contains 

the tumor) does not affect the segmentation speed. 



 

Fig. 5: Resulting segmentation superimposed into semi-transparent cutout of the dataset, 

which corresponds to Figure 1. 

To evaluate the approach, 

neurological surgeons with 

several years of experience in the 

resection of brain tumors 

performed manual slice-by-slice 

segmentation of ten pituitary 

adenomas. Afterwards, the 

manual segmentations were 

compared with the segmentation 

results of the proposed method 

via the Dice Similarity 

Coefficient (DSC)13, 14. The Dice 

Similarity Coefficient is the 

relative volume overlap between 

A and R, where A and R are the 

binary masks from the automatic 

(A) and the reference (R) 

segmentation. V(•) is the volume 

(in cm3) of voxels inside the 

binary mask, by means of 

counting the number of voxels, 

then multiplying with the voxel 

size: 
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The average DSC for all 

datasets was 75.92%±7.24% 

(minimum 63.74 and maximum 

86.08, see Table 1 for details). 

Compared to a manual 

segmentation that took, on the 

average, 3.91±0.54 minutes, the 

segmentation in our 

implementation required about 

one second. 

 

 
Volume of tumor (cm3) Number of voxels 

DSC (%) 
manual seg. 

time (min) manual algorithm manual algorithm 

min 0.84 0.6 4492 3525 63.74 3 

max 15.57 13.05 106151 88986 86.08 5 

)(    6.30  4.07 4.69  3.58 47462.7 34317.8 75.92  7.24 3.91  0.54 

Table 1:  Summary of results: min., max., mean   and standard deviation   for ten pituitary adenomas. 

Figures 1 and 2 show the user initializations (yellow outline) that have been superimposed onto a slice of the 

magnetic resonance imaging acquisitions of all ten pituitary adenoma datasets. The shown slices are the ones user 

selected as approximately central to the tumor. The segmentation results for the ten pituitary adenoma datasets are 

presented in Figures 5 and 6, by visualizing them as a three-dimensional closed surface model (yellow) faded into the 

corresponding MRI dataset (the order in Figure 6 corresponds to Figure 2). 



In conclusion, the proposed method can be used to augment the manual segmentation, reducing the work to contour 
corrections where necessary. It imposes no special preprocessing requirements, executes very quickly on modern 
hardware, and provides decent results. However, there are several areas of future work. For example, some parameter 
specifications of the proposed algorithm can be automated and we want to exchange the contour initialization with a 
single user-defined seed point that is placed in the pituitary adenoma. Additionally, we plan a comparison of the 
segmentation results with a recently introduced approach for spherically and elliptically shaped objects15, 16 that has also 
been used for pituitary adenoma segmentation10. 

 

   

   

 
 

 

Fig. 6:  Resulting segmentations as 3D models (yellow) superimposed into nine magnetic resonance imaging acquisitions of pituitary 

adenomas (the tenth is shown in Figure 5). The order corresponds to the user initializations presented in Figure 2. 
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