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Abstract 

Among all types of cancer, gynecological malignancies belong to the 4th most frequent type 

of cancer among women. Besides chemotherapy and external beam radiation, brachytherapy 

is the standard procedure for the treatment of these malignancies. In the progress of treatment 

planning, localization of the tumor as the target volume and adjacent organs of risks by 

segmentation is crucial to accomplish an optimal radiation distribution to the tumor while 

simultaneously preserving healthy tissue. Segmentation is performed manually and represents 

a time-consuming task in clinical daily routine. This thesis focuses on the segmentation of the 

rectum/sigmoid colon as an Organ-At-Risk in gynecological brachytherapy. The proposed 

segmentation method uses an interactive, graph-based segmentation scheme with a user-

defined template. In summary, the scheme creates a directed two dimensional graph, followed 

by the minimal cost closed set computation on the graph, resulting in an outlining of the 

rectum. The graphs outline is dynamically adapted to the last calculated cut. Evaluation was 

performed by comparing manual segmentations of the rectum/sigmoid colon to results 

achieved with the proposed method. The comparison of the algorithmic to manual result 

yielded a Dice Similarity Coefficient value of 83.85±4.08, in comparison to 83.97±8.08% for 

the comparison of two manual segmentations of the same physician. Utilizing the proposed 

methodology resulted in a median time of 128 seconds per data set, compared to 300 seconds 

needed for pure manual segmentation. 

 

Zusammenfassung 

Unter allen Krebsarten ist sind gynäkologische Tumore die vierthäufigste Art karzinogener 

Krankheiten. Neben Chemotherapie und externer Bestrahlung ist die Behandlung durch 

Brachytherapie eine Standardbehandlung für Krankheiten dieser Art. Im Verlauf der 

Therapieplanung ist es nötig die relative Lage des Tumors und benachbarter Organe durch 

Segmentierung zu erfassen um die verabreichte Strahlung möglichst genau planen zu können, 

wobei der Tumor zerstört sowie umliegende Organe geschont werden sollen. Die 

Segmentierung wird manuell durchgeführt und stellt einen höchst zeitaufwendigen Schritt in 

Verlauf der Therapieplanung da. Diese Arbeit konzentriert sich auf die Segmentierung des 

Rektum/Sigmoid colons als ein Risikoorgan in der gynäkologischen Brachytherapie und 

beschreibt einen interaktiven, graph-basierten Ansatz aufgebaut auf einer benutzerdefinierten 

Schablone. Es wird dabei ein zwei dimensionaler Graph aufgebaut, worauf die Berechnung 

eines minimalen Schnitts in der Umrandung des Rektums resultiert. Die Form des Graphen 

wird dabei dynamisch an die Form des Schnitts angepasst. Der präsentierte Algorithmus 

wurde durch den Vergleich manueller und algorithmischer Segmentierungen evaluiert. Für 

den Vergleich zwischen Algorithmus und Manuell wurde ein mittlerer Dice Similarity 

Coefficent von 83.85±4.08% erreicht. Für den Vergleich zweier manueller Segmentierungen 

wurde ein mittlerer Dice Similarity Coefficient von 83.97±8.08% ermittelt. Unter 

Verwendung des Algorithmus konnte eine Zeit (median) von 128 Sekunden pro Datensatz 

erreicht werden im Vergleich zu 300 Sekunden für eine manuelle Segmentierung. 
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1 Introduction 

It is estimated that in 2012 cancer related illnesses will account for the death of approximately 

577,190 Americans. Cancer is thus the second most common cause of death in the United 

States only exceeded by heart disease which accounts for almost 1 of 4 deaths. Numbers of 

the National Institutes of Health (NIH) state overall costs of $226.8 billion for cancer related 

illnesses in 2007. Thereby $103.8 billion account for direct medical treatment expenses and 

$123.0 billion for indirect cost due to lost productivity (Siegel, 2012). 

Additionally, the frequency of cancer related illnesses increases over proportionally since the 

beginning of the last century and continuously affects all age groups (Kauffmann et al., 2006). 

Despite these facts it was observed that the 5-year relative survival rate among all types of 

cancers treated between 1975 and 1977 increased from 49% to 67% in the years from 2001 to 

2007 (Siegel, 2012). These numbers clearly indicate the need for improved treatment 

strategies and technologies but they also show that medical research efforts put into the field 

can make an impact on patient’s lives and the overall socioeconomic costs caused by tumor 

related illnesses. 

In the progress of cancer treatment 60-70% of all patients will at one point in time come in 

contact with radiotherapy procedures (Kauffmann et al., 2006). Besides the acquisition of 

medical images themselves, one key step in radiotherapy treatment is computer assisted 

segmentation of those acquired medical images. Thereby, valuable information about the 

acquired images is retrieved by separating them into meaningful anatomical regions (Babalola 

et al., 2008). This step is a crucial requirement for every computer-assisted radiotherapy 

treatment plan which the optimization of dose distribution regarding the tumor and organs-at-

risk (OAR) strongly depend on. Without exact knowledge about the location of the tumor and 

adjacent organs, precise local tumor control with simultaneous sparing of healthy tissues 

cannot be achieved (Lechsel, 2007). 

The technological progress in medical imaging technologies over the last decades led to a 

broader use into fields such as diagnosis, treatment planning and clinical studies. At the same 

time the technology enabled the acquisition of large amounts of image data in short periods of 

time. This trend causes the amount of data acquired consistently exceeding the amount of data 

used in succeeding treatment procedures. Because manual segmentation is until today 

regarded as gold standard, not all theoretically available information can be retrieved due to 

limited human capacities (Babalola et al., 2008). Furthermore, this practice is time consuming 

and not resource efficient and therefore demands the development of reliable computer 

assisted systems to support physicians in their evaluation of medical image data (Lechsel, 

2007). 

Various fully automatic segmentation methods have been proposed and are being constantly 

improved. However few of these automatic analysis tools can guarantee robust results or are 

in clinical usage (Birkbeck et al., 2009, Vezhnevets and Konouchine, 2005). Although 

commercial tools can exhibit sufficient results for the prostate or urinary bladder, the rectum 

is still problem prone and needs further improvements (Haas et al., 2008) (Huyskens et al., 

2008). 

As none of the current fully automatic approaches provides sufficient results for the rectum 

and sigmoid colon, manual refinement of the computed segmentation is desirable and the 
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motivation for the development of interactive segmentation approaches (Egger et al., 2012b). 

They can speed up the segmentation process but yet give the physician enough control over 

the algorithm to directly influence and improve the segmentation result (Birkbeck et al., 

2009). 

Gynecological malignancies which include endometrial, vaginal/vulvar and cervical cancers 

represent the 4
th

 most frequent type of cancer among women and a major cause of death 

around the world (Siegel, 2012). The standard procedure for primary or recurrent treatments 

of these types of cancer consists of external-beam radiation (EBR) followed by 

brachytherapy. During the brachytherapy procedure needle like catheters carrying a radiation 

source are inserted into the patient in close proximity to the tumor in order to directly irradiate 

the malignant tissue (Viswanathan and Erickson, 2010). A crucial step in planning the applied 

amount and distribution of radiation is the segmentation of the tumor and adjacent organs-at-

risk potentially exposed to radiation. The most common OAR segmented in gynecological 

brachytherapy include the urinary bladder and the rectum/sigmoid colon (Viswanathan, 

2011). 

This thesis focuses on the segmentation of the rectum/sigmoid colon as an organ-at-risk in the 

context of MR images for Image Guided Gynecological Brachytherapy. The rectum/sigmoid 

colon has due to its mostly inhomogeneous appearance proven to be challenging for current 

segmentation tools (Haas et al., 2008) (Egger et al., 2012a). A novel interactive segmentation 

algorithm for the segmentation of the rectum/sigmoid colon based on graph theory is 

presented. 
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2 Preliminaries 

2.1 Problem Statement 

In the course of Image Guided Interstitial Gynecological Brachytherapy a crucial preliminary 

step to treatment is the segmentation of the tumor as the target-volume (TV) and adjacent 

organs potentially exposed to radiation as the organs-at-risk (Viswanathan, 2011). With the 

3D information about the tumor and OARs, the positioning of each interstitial needle are 

controlled and the radiation loading and dwell time of each needle is determined in order to 

optimize the dose distribution applied to the tumor, while sparing the OARs from radiation as 

much as possible. This delineation of anatomical structures is mostly conducted manually by 

a physician by drawing outlines of the structure on a slice by slice basis and represents a time-

consuming task in the progress of planning radiological treatments (Bille and Schlegel, 2002, 

Pasquier et al., 2007).  

In general cases the performing physician might have to outline several structures in more 

than 80 slices (Bille and Schlegel, 2002). Regarding the specific given problem of treatment 

planning in Image Guided Brachytherapy (IGBT) at Brigham & Women’s Hospital (BWH) in 

Boston, USA, manual segmentation of the rectum/sigmoid colon by outlining the object 

contour has to be conducted in more than a dozen slices and is a tedious task. 

Over the last decades various fully automatic segmentation methods have been proposed to 

support this segmentation process. However, the development of fully automatic 

segmentation tools remains problematic due to variability in pelvic organ shape and poor soft 

tissue depiction. None of these automatic analysis tools can guarantee robust results or 

achieved clinical approval. Moreover, they mostly lack necessary intervention methodologies 

and provide little final control by the medical doctor over the segmentation (Birkbeck et al., 

2009, Vezhnevets and Konouchine, 2005), (Pasquier et al., 2007). As none of the current fully 

automatic approaches provides sufficient results, manual refinement of the computed 

segmentation is desirable and the motivation for the development of interactive segmentation 

approaches (Egger et al., 2012b). In summary, they can speed up the segmentation process yet 

give the physician enough control over the algorithm to directly influence and improve the 

segmentation result (Birkbeck et al., 2009). 

A major research effort was being put into brain tumor segmentation (e.g. (Corso et al., 2008), 

(Wels et al., 2008), (Khotanloua et al., 2009)), but only some research effort has been focused 

on segmentation algorithms for pelvic structures regarding the urinary bladder, 

rectum/sigmoid colon or malignant tumor volumes. Most of these approaches were either 

fully automatic or applied to Computer Tomography images (e.g. (Pasquier et al., 

2007),(Pekar et al., 2004), (Mazonakis et al., 2001)). While both CT and MRI are used for 

image guided radiotherapy of gynecological malignancies, CT represents the standard 

imaging technology for treatment with external radiation therapy (EBRT), MRI the 

technology widely used for image guided brachytherapy (Viswanathan, 2011). 

Conditioned by the lack of methodologies for MR-guided IGBT applications, the standard of 

time-consuming manual segmentations and problems of fully automatic tools, there is a strong 

desire for the development of interactive segmentation algorithms to assist physicians in the 

course of interstitial gynecological radiotherapy treatment planning. 
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2.1.1 Anatomy of the Female Pelvis 

This chapter generally follows the structure given in (Drake et al., 2005), (Greene et al., 2006) 

and (Schünke et al., 2005) and provides an overview of the anatomical structures of the 

female pelvis which will be used in the following chapters. 

In human anatomy the pelvis is defined by the pelvic bones and the terminal parts of the 

vertebral column. It is generally regarded as two separate regions, the superiorly lying false 

pelvis (greater pelvis) which is considered part of the abdomen and the inferiorly lying true 

pelvis (lesser pelvis) which is associated with the pelvic bones and lower vertebral column 

(sacrum and coccyx). The pelvic cavity is a space enclosed by the pelvic girdle and the pelvic 

brim as well as the pelvic inlet and the pelvic floor. It contains anatomical structures of the 

urinary, gastrointestinal and reproductive system (see Figure 1).  

The urinary system is located anteriorly, the reproductive system along the midline and the 

rectum posteriorly. The bladder and the urethra represent the urinary system. 

Beginning caudal, the reproductive system consists of the vagina and uterus as well as two 

pairs of uterine tubes and ovaries. 

 

 

Figure 1: Illustration of the female pelvis: (1) anal canal (2) rectum, (3) sigmoid colon, (4) urethra, (5) 

vagina, (6) bladder, (7) uterus. Illustration based on (Drake et al., 2005) 

The gastrointestinal system begins with the stomach, continues with the intestine and ends 

caudal with the penetration of the floor of the pelvic cavity by the anal aperture. The intestine 

consists of the small and large intestine, whereby the small intestine represents the longest 

part of the gastrointestinal tract. 
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In the small intestine most of the digestion and absorption of food takes place. Its average 

length varies between 6m - 7m in adults, its diameter between 2.5 – 3.0cm. It can be further 

divided into the anatomical structures of the duodenum, the jejunum and the ileum. 

Following the small intestine continues the large intestine. It extends from the end of the 

ileum to the anal canal and is approximately 1.5m in length and approximately 3.5cm in 

diameter. Its main function comprises the absorption of remaining fluids and salts form the 

gut content. Its distinct anatomical structures are the cecum, appendix, colon, rectum and anal 

canal (see Figure 2). 

The appendix and cecum represent the beginning structures of the large intestine in the right 

groin, whereby the cecum measures 6cm - 9cm. Thereafter, the large intestine continues 

upward by the ascending colon through the right flank and into the right hypochondrium, 

measuring about 15cm – 20cm. The right colic flexure represents the location below the liver 

where the intestine bends to the left. Crossing the abdomen as the transverse colon, it 

proceeds into the left hychondrium, where it bends downwards at the left colic flexure. From 

there it continues as the descending colon through the left flank into the left groin, measuring 

about 10cm – 15cm. There it proceeds into the pelvic cavity in form of the sigmoid colon 

which expands about 12cm – 15cm. The rectosigmoid junction is generally described to be 

located around the level of the vertebra SIII and is marked by the fusion of the tenia of the 

sigmoid colon to form the circumferential longitudinal muscle of the rectum. The rectum 

measures roughly about 12cm in length and ends with the anal canal. 

All parts of the large intestine are covered by the peritoneum, a serous membrane, which 

secretes lubrication fluids. The peritoneum can be further distinguished depending on the part 

of the large intestine. Parts of the small intestine, in particular the first part of the duodenum, 

jejunum and ileum as well as the first parts of the large intestine, cecum, appendix, tansverse 

colon, sigmoid colon and upper third of the rectum are covered by the intraperitoneal. The rest 

of the duodenum, ascending colon, descending colon and middle third of the rectum are 

covered by retroperitoneal. The last third of the rectum is covered in infraperitoneal (Tortora 

and Derrickson, 2008). Depending on the MR pulse sequence, the tissues’ osmotic water 

content and possible giving of contrast media, their depiction in MR can vary (Paley and Ros, 

1997) (Elsayes et al., 2006). All parts of the large intestine are covered by layers of outer 

longitudinal and inner circular smooth muscles. 

One of the main characteristics of the large intestine is its large diameter compared to the 

small intestine. Accumulations of fat in form of the omental appendices are in particular 

associated with the colon. Primarily visible in the cecum and colon are the taeniae coli which 

are segregations of longitudinal muscles in its wall into three bands. Moreover, the large 

intestine is characterized by sacculations of the colon in form of the haustra of colon. 
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Figure 2: Illustration of the large intestine. It starts with the appendix (1) and cecum (2) in the right 

groin(A), continues as ascending colon (3) into the right flank (B) and right hypochondrium (C), 

crosses the abdomen (D) as transverse colon (4) into the left hypochondrium (E) and continues into 

the left flank (F) and left groin (G) as descending colon (5). From there it continues as sigmoid colon 

(6) and expands as rectum (7) into the anal canal (8) in the pubic (H). The umbilicial (I) is not 

transversed by the large intestine. Illustration based on (Drake et al., 2005) 

 

2.1.2 Image Guided Interstitial Brachytherapy 

Treatment of tumor related illness through the application of radiation is one of the most 

effective therapies besides resection of the affected area and chemotherapy, and is only 

deployed in combination with other forms of therapy. The object of today’s radiotherapy is an 

improved distribution of the radiation dose. Ensuring the medically necessary concentration 

of radiation on the affected carcinogenic cells while harmful side effects on healthy tissues are 
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avoided by sparing them from radiation is pivotal for an accurate tumor treatment (Lechsel, 

2007). 

For gynecologic cancers the standard-of-care treatment begins with external-beam radiation 

and is succeeded by brachytherapy. The term brachytherapy origins from the Greek word 

brachys (“βραχυς”), meaning “short-distance” and describes a radiology treatment procedure 

where a radiation source is brought in short distance to the tumor as the target volume. Close 

proximity of the radiation source to the target volume is advantageous to other forms of 

radiotherapy as it allows accurate local distribution of the radiation dose through sharp dose 

gradients. Simultaneously to a high integral dose in the target volume, low exposure to 

radiation of the patient’s healthy tissue can be accomplished (Kauffmann et al., 2006). 

Usually, only considerately small and easily accessible volumes are treated with 

brachytherapy (Morris, 1998).  

Moreover, brachytherapy can, compared to EBRT, take organ movements as well as 

alterations in patient setups into account. It also has the potential to reduce radiotherapy 

related morbidity and enhance quality-of-life if imaging technologies are repetitively used to 

support the procedure (Viswanathan, 2011). 

In clinical usage three types of brachytherapy can be discriminated. Mold treatment describes 

a treatment of carcinogen skin malignancies where the radioactive source is externally placed 

on the patient’s skin area. In Intracavitary treatment the radioactive source is placed into the 

human body through a natural body orifice, e.g. the uterine or anal canal. Interstitial treatment 

is characterized by direct insertion of a sealed radioactive source into the target volume to be 

treated, e.g. tongue, brain or gynecological structures (Morris, 1998). 

The following description of MR-guided interstitial brachytherapy strongly refers to the 

workflow at Brigham & Women’s Hospital described in (Kapur et al., 2012). 

Prior to radiation application, various MR image data is acquired according to a diagnostic 

MR protocol. This includes a T2-weighted fast spin echo (Siemens TSE), T1-weighted fast 

spin echo (Siemens TSE) before and after injection of contrast medium, single-shot half-

Fourier fast spin echo (Siemens VIBE), diffusion-weighted echo planar imaging, as well as 

RF-spoiled gradient echo (GRE) sequences. After these preliminary image acquisitions 

follows external-beam radiation succeeded by interstitial brachytherapy in BWH’s state-of-

the-art Advanced Multimodality Image Guided Operating (AMIGO) suite.  

 

Figure 3:Overview of the AMIGO suits: (1) MRI room, (2) Operating room, (3) PET-CT room 

(NCIGT, 2013) 

To this date, three categories of gynecological procedures have been performed in the 

AMIGO suite depending on the type of applicator. The first type consists of a MR-compatible 

tandem coupled with ovoids (T&O) or a ring (T&R). The second type is a hybrid T&O 
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applicator with needlle-bearing ovoids (Utrecht Applicator) or T&R with needle-bearing ring 

(interstitial ring or Vienna Applicator). The third type of applicator consists of a Syed-Neblett 

template and plastic needles with central tungsten alloy obturators. The procedure involving 

the last type of applicator will be described in further detail (see Figure 5). 

 

 

Figure 4: Applicator used in gynecological brachytherapy: (1) needles, (2) obturator, (3) template (© 

BWH-SPL, 2012) 

The first step in interstitial brachytherapy is the insertion of a sterile speculum into the vaginal 

canal to provide sufficient visualization of the vagina and the tumor to be treated. Thereafter a 

single suture is threaded into the apex which assists in retracting the vaginal apex as inferiorly 

as possible. The obturator is then inserted against the vaginal apex and over the suture. The 

template is put over the already inserted plastic obturator. At all four corners the template is 

sutured to the patient’s skin. Before the placement of the template, its holes are filled with 

sterile contrast agent for enhanced visibility of the subsequently inserted needles. With the 

obturator and template inserted and sutured, an initial three-plane (sagittal, axial and coronal) 

T2-weighted MR localizer is conducted. 

Although CT and MRI are both used for image-guided radiotherapy of gynecological 

malignancies, CT is widely seen as modality of choice for treatment planning of external-

beam radiation and assists in diagnosis. MRI stands for the standard modality for image 

guided brachytherapy and is regarded as the gold standard for the assessment of gynecological 

malignancies. In contrast to the less precise information about tumor extension, tumor 

regression and internal organ movements CT delivers, MRI accomplishes accurate depiction. 

For IGBT in particular T2-weighted MRI sequences are considered as the gold standard. The 

use of MRI-compatible applicator and probes as well as contrast agent impregnated vaginal 

packing facilitates clear depiction of all relevant anatomical structures in the acquired images. 

Although only limited data about the correlation between image orientation and quality of 

object outlining is available, the orientation of image acquisition is suggested to be conducted 

in a “brachytherapy oriented view” displaying the applicator from an orthogonal and parallel 

orientation (Viswanathan, 2011).  

After image acquisition, tungsten alloy central obturator needles are inserted into 24cm - 29 

cm long hollow plastic catheters (ProGuide, Nucletron Co.) and both are inserted together into 



 Preliminaries 

 15 

the patient through the template’s holes. After the first needles are inserted, a 3D-balanced 

steady-state free precession (bSSFP) sagittal image is acquired to localize the catheters and 

enable adjustments. This prevents unintended insertion of the needles into adjacent organs and 

improves full tumor circumvallation. Thereafter, subsequent needles are inserted in a way that 

the visualized area of the tumor is fully covered and healthy tissue is spared. In the progress 

of needle insertion, a series of T2-weighted MR scans are acquired for quick-monitoring 

purposes. After all needles are inserted, final T2-weighted MR images with a slice thickness 

of 1.6 mm are acquired in the sagittal, axial and coronal planes (see Figure 5). 

 

 

Figure 5: T2-weighted MR images recorded in the course of gynecological brachytherapy: (1) axial 

view, (2) sagittal view, (3) coronal view (© TUM-MIMED, 2012, MRI data from (Egger et al., 

2012e)) 

Afterwards, those images are transferred to the treatment-planning system (Ocentra Brachy, 

Nucletron Co.) via the internal BWH network. The first step in treatment-planning consists of 

manual contouring the tumor as well as adjacent organs-at-risk represented by the bladder and 

rectum/sigmoid colon. To support segmentation of the bladder a Foley catheter filled with 

contrast media is applied through the urethra prior image acquisition which leads to contrast 

rich depiction. In the last step of treatment-planning, dosimetric calculations are conducted to 

determine the medically necessary amount of radiation. The results are used as basis for the 

patient individual treatment plan. 

Thereafter, radiological brachytherapy is administered based on the treatment plan. 

 

2.1.3 Treatment Planning 

For every radiology treatment a patient individual therapy plan has to be compiled. A general 

workflow description applying both to EBRT and IGBT is given in Figure 6. In the process of 

treatment planning the segmentation of the tumor and adjacent organs-at-risk is performed 

and the amount of applied radiation is estimated. 

After image acquisition, the first step of treatment planning consists of the determination of 

the target volume to be treated. According to the International Commission on Radiation 

Units and Measurements (ICRU) ((Measurements, 1999)) various target volumes are defined. 

Those volumes can be distinguished into oncological volumes and radiotherapeutic volumes. 
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Figure 6: General workflow of a radiology treatment plan; Clinical Target Volume (CTV), Organ-At-

Risk (OAR); altered from (Bille and Schlegel, 2002) 

Oncological volumes consist of the gross tumor volume (GTV) and the potential tumor spread 

area. 

The GTV can be described by visibility in different image slices and encompasses an area 

where tumor cells were diagnostically or surgically verified. Further indirect indications for 

GTV determination are deformations of adjacent healthy structures. The potential tumor 

spread area encompasses an area surrounding the GTV where no tumor cells have been 

verified, proliferation into this area has to be assumed however. The clinical target volume 

(CTV) has to fully encompass the GTV as well as the potential tumor spread area. 

Radiotherapeutic volumes are represented by several volumes taking alterations of the patient 

position, dose distribution and exposition of radiation into account. 

The clinical target volume (CTV) has to fully encompass the GTV as well as the potential 

tumor spread area. The planning target volume (PTV) comprises the CTV and an additional 

safety area to take alteration in the progress of therapy into account, e.g. non reproducibility 

of patient positions, different filling levels of organs and organ movement or weight loss. 

In case the PTV is covered by an isodose area which is sufficient for the treatment target, the 

treated volume (TV) equals the PTV. The TV has to equal or be larger than the PTV. 

The irritated volume (IV) describes areas where exposition to radiation is undesirable, 

however, inevitable and effects of radiation cannot be precluded. 

In case healthy tissues prone to side effects of radiation are found in the area where radiation 

is applied, those tissues or organs have to be denoted and segmented as organs-at-risk. 
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According to their respective sensitivity to radiation these OAR have to be spared from 

radiation exposition or at least be taken into account for dose distribution (Kauffmann et al., 

2006), (Bille and Schlegel, 2002). 

 

 

Figure 7: Schematic depiction of oncological and radiotherapeutic volumes in treatment planning: (1) 

Gross Tumor Volume (GTV), (2) Clinical Target Volume (CTV), (3) Irritated Volume (IV), (4) 

Planning Target Volume (PTV), (5) Organ-At-Risk, illustration based on (Kauffmann et al., 2006) 

Regarding radiation sensitivity, the stomach has the highest risk of long-term effects due to 

exposition to radiation of all organs of the digestive system. After exposition of 40 Gy serious 

symptoms appear in form of stomach pain, nausea, loss of appetite and vomiting. Exceeding 

40 Gy chronic side effects are prone to appear in form of ulcers and bleeding. The upper limit 

for the stomach is considered to be approximately 50 Gy. Sensitivity to radiation decreases 

continuously from the stomach to the rectum. The risk of chronic after-effects to exposition of 

50 Gy decreases from 50% at the stomach, to 35% at the small intestine, to 20% at the colon 

and 5% at the rectum. However, these values strongly correlate with dose fraction 

(Kauffmann et al., 2006) 

The specific workflow of treatment planning of IGBT at BWH will be described in further 

detail and refers to details given in (Kapur et al., 2012). At BWH treatment planning for IGBT 

comprises radiation distribution confined by the template and dose calculation. It can also 

comprise the step of applicator selection and inserted needle arrangement. As described in 

chapter 2.1.2 all patients undergo axial, sagittal and coronal T2-weighted MR imaging with a 

slice thickness of 1.6mm after applicator insertion. To ensure the applicator can be localized 

additional CT scans are performed and a rigid registration with the MR images is computed 

Thereafter follows manual contouring of the normal tissue in the CT/MR merged images. 

Contouring of CTV as well as OAR is performed in MR images since MR provides clearer 

depiction of the soft tissue regions of interest. 

With high dose gradients in state-of-the art brachytherapy, the applicator needs to be 

reconstructed to ensure exact dose delivery and distribution. This step can either be performed 

manually or model-based. 

The actual 3D planning is iterative and starts with a standard 2D plan. For T&O as wells as 

T&R treatments the preliminary designed plan is normalized to point A. Thereby Point A 

describes a point in 2cm distance from the tandem and 2cm superior to the upper surface of 

the vaginal applicator and is often used as a reference in IGBT (Mundt et al., 2011). For 
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interstitial treatment all needles are loaded symmetrically in the preliminary standard 

planning, however point A is not defined. 

 

 

Figure 8: Interstitial treatment planning: slice-by-slice optimization of radiation dose distribution on 

tumor (CTV) and sparing adjacent Organs-At-Risk, (1) Tumor, (2) Rectum/sigmoid colon, (3) 

Brachytherapy obturator, (4) 100% isodose line, (5) urinary bladder (illustrated from Kapur et al. 

(2012), data from Egger et al. (2012e)) 

After preliminary planning based on a standard 2D distribution follows optimization in 3D. 

Figure 8 illustrates how based on the segmentations performed in CT and MR the standard 

plan is altered to satisfy case specific constraints and parameters for each specific case. This is 

done by manually altering dwell times in various locations to achieve optimal coverage of the 

CTV while dose exposition to OAR is simultaneously minimized. Radiation coverage is 

evaluated by the CTV D90 parameter which represents a standard parameter for treatment 

planning evaluation (Jürgenliemk-Schulz et al., 2010). Ideally, the CTV D90 should exceed 

100% of the prescribed dose to the CTV. This estimation is conducted manually by slice by 

slice comparison of dose distribution and CTV. The final 3D adjustment of dose distribution 

further increases CTV radiation coverage and decreases the dose applied to OAR. 

 

2.1.4 MRI Depiction of the Lesser Female Pelvis & Rectum/Sigmoid Colon 

As described in chapter 2.1.2, CT and MRI are both in usage for image-guided radiotherapy 

of gynecological malignancies. However, CT is widely seen as gold standard for diagnosis 

and treatment planning of external-beam radiation performances. In contrast to the less 

precise information about tumor extension or regression and internal organ movements that 

CT delivers, MRI images present a more accurate depiction and discrimination of tumor and 

soft tissue. Direct comparisons between object contouring in CT and MR for IGBT treatment 

planning showed a significant overestimation of contour width in CT images compared to MR 

(Viswanathan, 2011). 

State-of-the-art MR scanners in clinical usage operate in a range of 1.5T – 3T and exhibit an 

advantageous signal-to-noise ratio. Open low field 0.2T – 0.5T MRI scanners can offer 

advantages for claustrophobic patients and easier patient handling, however, disadvantages 

regarding image quality compared to MRI scanners of 1.5T or higher let to increased usage of 
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scanners of 1.5T and higher in the radiology community. For IGBT T2-weighted MR imaging 

is considered the gold standard. Its staging accuracy of cervical carcinoma has been evaluated 

to be between 75% up to 96% (Kapur et al., 2012). 

In order to deliver an optimal depiction of all surgical instruments (needles, obturator and 

template) as well as the tumor and organs-at-risk, image acquisition in a “brachytherapy 

oriented view” is performed. For optimal outlining of the tumor and OAR, images in axial 

view are used and are therefore recorded in the highest resolution. (Viswanathan, 2011) 

For illustration purposes of the latter following MRI images, Figure 9 shows the same axial 

anatomical cross section of the lower female pelvis as depicted in axial MR images used for 

IGBT. 

In the center of Figure 9 an anatomical cross-section of the urinary, gastrointestinal and 

reproductive system can be seen. Anteriorly lies the urinary bladder, followed by the vagina 

in the center and the rectum posteriorly, all covered in serous peritoneum membrane (see 

section 2.1.1) and layers of outer longitudinal and inner circular smooth muscles. 

Lateral from the center, the anatomical structure of the tuber ischiadicum as part of the pelvis 

bone can be seen. Further lateral a cross section of the os femoris as the tigh bone is to be 

found. In relation to these bones are the muscles of the various inner pelvic muscles. Further 

posterior lays the muscle gluteus maximus which represents a large part of the buttocks. The 

fossa ischianalis represents a body fat compartment lateral to the anal canal and inferior to the 

pelvic floor. 

 

 

Figure 9: Axial cross section of the anatomical structure of the lower female pelvis: (1) Rectum, (2) 

Vagina, (3) Urinary Bladder, (4) Fossa Ischionanalis, (5) Gluteus Maximus, (6) Tuber Ischiadicum, (7) 

Os Femoris. Illustration based on (Schünke et al., 2005) 

Figure 10 shows a T2-weighted Turbo Spin Echo (TSE) image in a resolution matrix of 320 x 

256. 

Besides the illustrated anatomical structures of muscles, bones and body fat compartments, 

Figure 10 shows, accordingly to Figure 9, several anatomical structures of greater importance 
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to this thesis. Anteriorly the urinary bladder can be seen, characterized by a high grey value 

(GV) relative to the whole image. This is due to given contrast media prior to image 

acquisition to facilitate depiction and delineation. In the center of the bladder the inserted 

catheter is visible. In the given slice only a limited cross section of the bladder is visible and 

will expand to an approximate shape marked by the dashed line in further slices. 

Below the bladder the vaginal canal and the inserted brachytherapy obturator can be 

distinguished. The gynecological tumor encompasses parts of the obturator and is located in 

close proximity to the urinary bladder and rectum, which leads to potential radiation and thus 

classifies them as organs-at-risk. In close proximity to the tumor and obturator several 

brachytherapy needles are found, depicted as dark, round dots. 

Posteriorly of the vagina and obturator lays the anatomical structure of the rectum and 

sigmoid colon. In T2-weighted TSE MR images the rectum/sigmoid colon is mostly 

characterized by a medium level grey value relative to the whole image. In several cases it can 

also be characterized by a dark border which roughly distinguishes it from adjacent structures. 

 

 

Figure 10: Axial cross section of the lower female pelvis in a T2-weighted TSE image with anatomical 

structures: (1) Rectum, (2) Vagina & Obturator, (3) Urinary Bladder, (4) Tuber Ischiadicum, (5) Os 

Femoris, (6) Gluteus Maximus, (7) Fossa Ischionanalis, (8) Gynecological Tumor, (9) Brachytherapy 

Needles (© TUM-MIMED, 2012, MRI data from (Egger et al., 2012e)) 

 

In the publicly available MR data sets which have been used for this thesis (Egger et al., 

2012e), the depiction of the rectum/sigmoid colon strongly varies as can be seen in Figure 11. 

From each data set to another, its shape, size, slice thickness and grey value distribution alter 

in no predictable manner. 

 



 Preliminaries 

 21 

 

Figure 11: Depiction of the rectum/sigmoid colon in several different data sets of T2-weighted TSE 

MR images. Its appearance alters in shape, contrast and grey value distribution in no predictable 

manner (© TUM-MIMED, 2012, MRI data from (Egger et al., 2012e)) 
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Outlining of a tumor and the adjacent organs-at-risk, in particular the bladder and 

rectum/sigmoid colon, is manually performed in axial view oriented T2-weighted MR images. 

As mentioned in chapter 2.1, patient-individual pelvic organ shape and partly poor soft tissue 

discrimination by current imaging technologies prevents computer-based segmentation and 

makes it a difficult task for physicians (Pasquier et al., 2007). This inevitably leads to inter- as 

well as intra-personal variances regarding segmented volumes. Since every segmentation 

performance is a subjective task, the segmentation result, besides imaging quality, strongly 

depends on clinical experience of the performing physician (Bille and Schlegel, 2002). 

 

2.2 State of Clinical Applications  

In the clinical routine manual segmentation is still considered the gold standard for 

segmentation of anatomical structures in general and also the rectum/sigmoid colon (Chang et 

al., 2011) (Elsa et al., 2010) (Birkbeck et al., 2009). Its workflow and usage will be shortly 

described in this chapter. Currently available commercial tools which provide segmentation 

tools include the Smart Segmentation
TM

 Tool of the Varian, Inc. 

 

2.2.1 Manual Segmentation  

Slice by slice manual outlining of anatomical structures with little computer assistance is the 

standard methodology for clinical segmentation tasks. In some cases it can be necessary to 

outline as many as 10 anatomical structures in more than 50 image slices, making it a tedious 

time consuming task (Bille and Schlegel, 2002). 

Moreover, manual segmentation is still considered the gold standard and the widely accepted 

reference method for comparisons between different segmentation methodologies. Although 

manual segmentation is time consuming and prone to high inter- and intra-observer 

variability, until today no computer-assisted methodology exhibits sufficient robustness and 

reproducibility to be taken as a standard reference instead (Chang et al., 2011) (Elsa et al., 

2010) (Birkbeck et al., 2009). This lack of an objective computer-based segmentation 

standard causes manual segmentations continuously used as the only methodology at hand to 

compare segmentation algorithms, although manual segmentation itself is highly subjective, 

strongly depends on individual clinical experience of the performing physicians and exhibits 

difficult reproducibility (Bille and Schlegel, 2002). 

Egger et al. compared manual segmentations of glioblastoma multiforme brain tumors in MR 

images performed by three different physicians to estimate inter- and intra-variability. To 

estimate intra-variability a physician was asked to perform the same segmentation within a 

period of two weeks. The result revealed a DSC of 90.29 ± 4.48% for the same physician’s 

different segmentations. The segmentation of two other physicians was compared to the 

segmentation of the first and revealed a inter-varibility in the DSC values of 88 ± 6.08% and 

86.63 ± 6.87% (Egger et al., 2013). These results show the difficulty that lies within manual 

segmentation being used in clinical daily routine and its use as reference method to evaluate 

segmentation algorithms. 
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Figure 12: Sequence of a manual segmentation of the rectum/sigmoid colon by using the Draw Effect 

Tool included in 3D Slicer. The object in (1) is outlined slice by slice by a draw effect tool (2), (3) and 

the enclosed area is stored (4) (© TUM-MIMED, 2012, MRI data from (Egger et al., 2012e)) 

As an example, manual segmentation will be shortly illustrated by the Draw Effect Tool of 

the open source software package 3D Slicer (Slicer-Community, 2013a) which is used for 

research purposes at the Brigham & Women’s Hospital (see Figure 12). 

Figure 12 illustrates a sequence of a manual segmentation in a single slice. The user outlines 

the object contour and the enclosed pixel area is stored. After all slices are segmented and 

organ contours are stored separately, the 3D volume of all objects is calculated. Figure 13 

shows the calculated volume of the relevant organs-at-risk in gynecological brachytherapy, 

rectum/sigmoid colon (blue) and urinary bladder (green), as well as the tumor (red). 
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Figure 13: After outlining of all respective organ slices, the volume is calculated and displayed: (1) 

Rectum/Sigmoid colon in blue, (2) Tumor in red, (3) Urinary Bladder in green (© BWH-SPL, 2012, 

MRI data from (Egger et al., 2012e)) 

 

2.2.2 Commercial Segmentation Tools 

Smart Segmentation
TM

 Tool of Varian, Inc. 

The Varian Medical Systems, Inc. offers a software package Eclipse
TM

. It is a treatment 

planning software for radiation therapy planning, including electron-, proton- and 

brachytherapy (Varian, 2013). It is also used at BWH for treatment planning of interstitial 

brachytherapy treatment planning described in detail in section 2.1.3. Within the Eclipse
TM

 

software package the software tool Smart Segmentation® for contouring applications can be 

found. This tool is an automatic segmentation tool for anatomical structures and uses a rule-

based algorithm approach with anatomical reference points and organ-specific segmentation 

methods. It was specifically developed for the evaluation of CT-based images. The course of 

segmentation is as following. First a pre-segmentation step finds body outlines as well as 

bones and lung equivalent tissue, separating the body volume from the. Thereafter follows a 

step for detection of the anatomic orientation which determines the patient position, patient 

gender and the respective body region. In the last step follows structure segmentation which 

tries to localize reference points, outlines specific organs and refines the result. 

The algorithm has been clinically evaluated by comparison to manual segmentations of 

several clinicians and radiation oncologist and a data set of 600 CT images. The qualitative 

and quantitative analysis of the algorithm proofed its efficiency and its usage can lead to a 

time gain for the segmentation of the prostate and the bladder. 

Although robustness and time saving potential could be shown, manual corrections of organ 

outlines had generally to be performed. The outline of the rectum proofed to be especially 



 Preliminaries 

 25 

challenging and required further improvements. The result for the segmentation of the bladder 

was considered between “excellent” and “good”. For the rectum the result was considered 

“acceptable” to “not acceptable” (Haas et al.) (Haas et al., 2008) (Huyskens et al., 2008). 

 

2.3 State of Research 

Various fully automatic as well as interactive semi-automatic segmentation tools have been 

developed to this date. They are based on distinctive mathematical theories and exhibit 

characteristic user workflows and parameter handling. Region-based approaches investigate 

grey values in interrelated regions, whereas contour-based approaches detect object contours 

and try to track them. Graph-based methods are a fairly new methodology where a graph is set 

up, grey values sampled determine its edges weights and a minimization along the graph is 

calculated to find an object contour. An overview about the current state of research on 

segmentation tools and their mathematical principles is given in this chapter. 

 

2.3.1 Region Growing 

In the methodology of region growing the grey values of pixels are examined and according 

to predefined rules, the respective pixels are successively labeled as part of the object or part 

of the background. This is repeatedly performed over every pixel until the whole image has 

been segmented and each pixel has been grouped (Davies, 2012). Generally, in a first step 

features are extracted neglecting possible object contours. Thereafter follows a preliminary 

segmentation. With the knowledge of the preliminary segmentation all previously extracted 

features are calculated anew. This scheme of alternating feature extraction and segmentation 

is repeated until it converges against a steady result (Jähne, 2005) 

Region growing algorithms are often used in combination with seed points which can be set 

by the user inside the object or outside into the background. Initially, the algorithm starts its 

iterative labeling around the seed point area with information provided by these. 

Two methodologies based on region growing will be further explained in detail. 

 

Simple Region Growing 

The simple region growing (Community, 2013) algorithm is based on a statistical region 

growing scheme which accepts one or several user-defined seed points as input. Starting with 

the area around the seed points a statistical model of the foreground consisting of the mean 

and standard deviation of intensity is computed. This statistical model is transferred into a 

scalar threshold range using the mean intensity of a seed point plus or minus a multiplier of 

the standard deviation. After this computation the result can be refined by recalculating the 

mean and standard deviation, where after a new segmentation is calculated. 

Besides providing seed points, the user has to handle several parameters to control the 

algorithm, expanding it to more than five degrees of freedom. A smoothing iterations 

parameter and a time step parameter define the smoothing parameters. The segmentation 
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parameters are comprised of a number of iterations, a multiplier and a neighborhood radius 

parameter. 

The algorithm has been tested on the available brachytherapy MRI data by trying to segment 

the rectum/sigmoid colon. The computed result can be seen in Figure 14. In a first step two 

seed points are set inside the object. Thereafter the algorithm computes a segmentation result. 

It can be seen that the algorithm strongly connects neighboring areas of like intensity of the 

seed points. This causes darker as well as brighter areas of the rectum to be spared and 

excluded from the segmented area. On the other hand, areas of like intensity to the seed points 

are falsely included in the segmented area. This phenomenon is known as leaking regarding 

region growing based algorithms and appears where the labeling criteria is not specific 

enough to clearly discriminate object and background areas. Thereby, poor contrast around 

organs contours can result in leaking of the growing area, letting the segmented area reach far 

beyond the actual object contour (Egger et al., 2012b) (Vezhnevets and Konouchine, 2005) 

(Heimann et al., 2004). 
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Figure 14: Segmentation result of the rectum/sigmoid colon by the simple region growing algorithm: 

(1) Raw image, (2) First Seed Point, (3) Second Seed Point, (4) Segmentation Result (© TUM-

MIMED, 2012, MRI data from (Egger et al., 2012e)) 

Although leaking can be limited by cropping a certain area around the region of interest where 

the algorithm is working, the effect will persist and the quality of the result regarding the 

region of interest will not be affected or enhanced. 

 

Grow-Cut 

The Grow-Cut algorithm is a semi-automatic interactive region growing algorithm. It uses 

cellular automata and user defined initialization scribbles as input classes and is further 

described in (Vezhnevets and Konouchine, 2005). The methodology needs a user-defined 

background class and can additionally cope with n classes to segment, determined by different 

user scribbles. Based on the user defined scribbles, the algorithm computes a region of 

interest enclosing the input areas. Thereafter, it tries to label all image pixels according to the 

different input classes and converges when all pixels are labeled. After a first result is 
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computed, the user can improve the result by providing further input scribbles where 

segmentation is tough and run the segmentation again. 

 

Figure 15: Segmentation result of the rectum/sigmoid colon by the Grow-Cut algorithm: (1) Raw 

Image, (2) Cropped Region of Interest, (3) Initialization Scribbles: Background (yellow), Object 

(green), (4) Segmentation Result (© TUM-MIMED, 2012, MRI data from (Egger et al., 2012e)) 

Egger et al. (Egger et al., 2012a) have investigated Grow-Cut with gynecological MR image 

data and tried to segment the urinary bladder, rectum/sigmoid colon and a gynecological 

tumor structure. Successful segmentations of the bladder could be shown by a Dice Similarity 

Coefficient of 91.94±5.4 compared to clinical expert manual segmentations. However, the 

Grow-Cut methodology did not achieve sufficient results for the tumor and rectum/sigmoid 

colon. This is due to their mostly inhomogeneous appearance. 

Figure 15 depicts a segmentation of the rectum/sigmoid colon based on the Grow-Cut 

algorithm. To limit the computation area and time a region of interest (2) is cropped from the 

original image (1). Thereafter follows an initialization with an object scribble (green) and a 

background scribble (yellow) (3). In the last screenshot (4) the computed segmentation result 

is depicted. In similarity to the simple region growing algorithm, Grow-Cut also exhibits 

leaking tendencies and problems segmenting the rectum/sigmoid colon. 
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2.3.2 Active Appearance Models 

In a segmentation algorithm based on Active Appearance Models (AAM), an atlas is used and 

prior information is implemented via a tree structure into a statistical model. The tree 

represents a hierarchical connection between anatomical structures where each sub tree 

represents a limited segmentation task. Segmentation solutions are calculated through an 

expectation-maximization by a conventional classifier. 

One example of an atlas-based algorithm based on data trees was developed by Pohl et al. 

(Pohl et al., 2007) and implemented in 3D Slicer as EM Segmenter module. Although it was 

specifically developed for the segmentation of brain MR images into anatomical structures 

such as white and grey matter, Pohl et al. mention the adaptability of the algorithm to a wide 

range of segmentation problems since a new atlas can be created for unknown problems by 

providing pixel samples 

 

EM Segmenter 

An implementation of an AAM data tree approach can be found in the 3D Slicer under EM 

Segmenter (Slicer-Community, 2013b) and it was applied to the segmentation of the 

rectum/sigmoid colon in the given gynecological brachytherapy MR images.  

 

Figure 16: Segmentation of the rectum/sigmoid colon based on a data tree algorithm implemented in 

the 3D Slicer EM Segmenter tool. (1) Raw image and cropped region of interest, (2) Segmentation 

result of the region of interest (© TUM-MIMED, 2012, MRI data from (Egger et al., 2012e)) 

As no hierarchical model of the rectum/sigmoid colon is available, the model was used as EM 

Segmenter without Atlas which lets the user define a new atlas based on pixel samples. Two 

types of classes were defined (background and tissue) and 30 pixel samples were provided for 

each class to generate an atlas. The result can be seen in Figure 16 which shows a leaking 

tendency of the algorithm and includes areas beyond the object outline. 
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2.3.3 Active Contours  

Active Contours (Kass et al., 1988), also known as deformable contours or snakes, is an 

object segmentation scheme which tries to outline a complete contour of an object. The idea is 

to segment an object outline even if the contour might be difficult to define in places due to 

lack of contrast or noise. Two initialization methodologies are common. Either a large contour 

encompassing the object is shrunk to fit the object outline or a small contour within in the 

object is enlarged to match the outline. Basically, the initial contour can be fairly arbitrary. Its 

shape is iteratively evolved by an energy minimization scheme trying to minimize the external 

represented by a degree of object fit as well as internal energy which tries to prevent the 

contour from becoming too complex (Davies, 2012). 

Conditioned by the continuous enhancement of the contour, noise and other contour 

imperfections can be compensated. Furthermore, so called subjective contours can be found 

by active contours. Subjective contours do physically not exist in images. However they can 

be reconstructed by including information of adjacent objects and the broader image. One 

example of a subjective contour is given in Figure 17 which can be found by an active contour 

approach but is hard to define with conventional approaches such as region growing (Egger, 

2012). 

 

 

 

Robust Statistics Segmenter 

One example of a segmentation methodology based on active contours is the work of Gao et 

al. (Gao et al., 2012). An implementation of the algorithm is included in 3D Slicer as Robust 

Statistics Segmenter (RSS) (Slicer-Community, 2013c). The user can initialize the algorithm 

by providing several input contours or scribbles. Thereafter, several parameters have to be set. 

Those parameters encompass the approximate volume, intensity homogeneity [0,1.0] , 

boundary smoothness [0,1.0] . 

The RSS was tested to segment the rectum/sigmoid colon in the available gynecological MR 

image data which is depicted in Figure 18. To initialize the algorithm two seed contours have 

been provided as object (green) and background (yellow). The segmentation result is depicted 

as blue area. It is considerably better compared to the results based on region growing or data 

trees, because the segmented area stays within the provided background contour (yellow) and 

Figure 17: Example of a subjective contour (1) which can be found by an active contour approach (2). 

Altered from () 

(1) (2) 
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leaking is thereby prevented. Setting the parameters to reasonable values however is 

considerably difficult and demands a notable amount of time. 

 

Figure 18: Segmentation of the rectum/sigmoid colon by an active contour model implemented in the 

3D Slicer Robust Segmenter tool. (1) Raw image, (2) Cropped region of interest, (3) Initialization with 

2 label maps, (background: yellow, object: green),(4) Segmentation result (© TUM-MIMED, 2012, 

MRI data from (Egger et al., 2012e)) 

 

2.3.4 Graph Cuts 

Modern computers are capable of handling dexterous computation tasks and it is that 

nowadays more complex algorithms can be used for image segmentation. One example of 

those are algorithms based on graphs. They have been applied to various fields such as stereo 

reconstruction, image segmentation, multiview reconstruction or planar shape matching 

(Schmidt et al., 2009). In particular several medical imaging segmentation schemes based on 

graphs have been proposed and employed to brain and other MR images (Egger et al., 2012c) 

(Egger et al., 2012d) (Wels et al., 2008) (Rother et al., 2004) (Birkbeck et al., 2009). 

The basic concept is the modeling of the image as a weighted, undirected graph. The graph’s 

nodes or vertices are represented by pixels or pixel groups and the weights between those 

nodes are determined by the likeness of neighboring pixels. To separate the object from the 
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rest of the image a minimal cut is calculated. This is an energy minimization related problem 

and can be formulated as an instance of a maximum flow problem which in turn is equal to a 

minimal cut of the graph (Boykov and Jolly, 2001). 

The segmentation scheme presented in this thesis is based on graphs and a detailed 

description follows in chapter 3. 

 

2.3.5 Interactive Methodologies 

In this thesis a novel interactive and iterative graph-based segmentation algorithm is 

presented. The need for interactive segmentation methodologies is rooted in the fact that until 

today no fully automatic methodology delivers guaranteed robust results (Vezhnevets and 

Konouchine, 2005). It is therefore that semi-automatic or so called interactive schemes 

become more and more popular as they allow the user to directly influence the segmentation 

result where it is particularly hard to calculate for the computer (Birkbeck et al., 2009) (Egger 

et al., 2012b). 

In this chapter various recent interactive methodologies and workflows will be presented. The 

focus will lie on the realization of interactivity and user workflow methodologies and less on 

the underlying mathematical algorithms. Moreover, the field of applications is extended from 

medical images alone to general purposes including photographical applications. 

The interactivity of most recent segmentation schemes is limited to initial user-defined 

scribbles. The user starts by providing several scribbles to define object classes and 

background areas. The algorithms then calculates a segmentation result which the user can 

enhance by providing more detail scribbles in areas where the segmentation is difficult and 

run the algorithm again. This kind of interactive user workflow strongly equals the workflow 

presented for Grow-Cut (see Chapter 2.3.1) and Robust Statistics Segmenter (see Chapter 

2.3.3). 

Further examples can be found in the work of: (Boykov and Jolly, 2001) (Artan, 2011) 

(Delong et al., 2011) (Ding and Yilmaz, 2010) (Kulkarni and Nicolls, 2009) (Nickisch et al., 

2010) (Phan and Androutsos, 2011) (Sindeyev and Konushin, 2008) (Wang et al., 2007) 

(Doria D., 2010) (Lechsel, 2007) (Mannan) (Steger and Sakas, 2012). 

Little alterations of the described scheme can be found in the work of (Rother et al., 2004) 

where the user drags a bounding box about the region of interest in a first step. Thereafter the 

algorithm computes a segmentation result which can be improved by providing user scribbles. 

In the work of (Steger and Sakas, 2012) the user provides a seed point for a graph-based 

approach. After the segmentation result is computed, it can be enhanced by detailed user 

scribbles. 

Figure 19 illustrates a workflow where the user provides scribbles to define object classes and 

background areas. 

In the approach of Blake et al. (Blake et al., 2004) the user draws along the object contour 

with a fat pen tool. The algorithm automatically tries to find the object outline in the given 

pen trail. Similarly, in the approach presented by Birkbeck et al. (Birkbeck et al., 2009) the 

user sweeps a brush or lasso tool coarsely along the object contour. The algorithm 

automatically calculates a segmentation in the underlying trail (see Figure 20, (1)). 
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Figure 19: Common interactive segmentation methodologies where the user provides input 

information by class scribbles: (1) object (green), background (yellow), (2) object (red), background 

(blue) (© TUM-MIMED, 2012, MRI data from (Egger et al., 2012e)) 

Jackowski et al. (Jackowski et al., 1999) presented a methodology where in an automatic 

segmentation scheme based on thresholding an object contour is found. Along the calculated 

outline so called control points are placed in constant distance. The user can interactively drag 

those control points to improve the segmentation result (Jackowski et al., 1999) (see Figure 

20, (2)). 

 

Figure 20: Illustration of interactive segmentation methodologies: (1) The user draws the object 

contour with fat brush tool, contour is automatically calculated within this trail, (2) User can improve 

automatic segmentation result (yellow line) by dragging object control points (yellow dots) (© TUM-

MIMED, 2012, MRI data from (Egger et al., 2012e)) 

Although the user can initialize scribble-based algorithms with arbitrary strokes and improve 

the calculated result with further input scribbles, eventually he has little influence on the 

computation process or the calculated result. Within the presented methodologies only the 

approach of Jackowski et al. enables the user to directly influence the resulting object contour. 
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2.4 Overview 

In summary, the stated problem is defined by the absence of computer-assisted tools to 

support physicians in the progress of segmentation of tumor tissue and organs-at-risk. This 

leads to a time consuming manual task which every developed tool has to be evaluated against 

to proof its time-wise benefit. Furthermore, the computer-assisted segmentation area has to be 

evaluated against manual results regarded as the gold standard to predict its robustness and 

quality. Various segmentation methodologies have been developed, an overview about their 

advantageous and disadvantageous will be shortly given here. 

Region Growing provides a simple basic concept to perform image segmentation tasks that 

can be implemented comparatively easily (Kamdi and Krishna, 2011). However, region 

growing algorithms can be become complex in practice and have to be computed iteratively. 

Thereby, local as well as global calculations have to performed, which causes each pixel to 

undergo several examinations and makes those algorithms very computation intensive 

(Davies, 2012). Another disadvantage of region growing algorithms is leaking, which can be 

caused by noise or weak, contrast poor edges that cause oversegmentation of an area 

(Vezhnevets and Konouchine, 2005) (Heimann et al., 2004) (Davies, 2012) (Egger et al., 

2012b). 

Active appearance models or atlas-based algorithms are advantageous in cases where 

repeatedly anatomical structures of a similar texture and shape have to be segmented. The use 

of an atlas can improve the segmentation result where only poor knowledge about pixel 

intensity relationships are known, e.g. contrast poor edges or noise. Furthermore, they can be 

advantageous in clinical practices where morphological comparisons between anatomical 

structures of patients can easily be performed. Disadvantages of atlas-based algorithms are the 

excessive time to create an atlas, because iterative steps or non-rigid registrations might be 

necessary (Kalinic) (Cabezas et al., 2011). Additionally, patient to patient shape differences of 

anatomical structures, e.g. the rectum/sigmoid colon, vastly limit the creation and further 

benefit of an atlas. Segmentation approaches for malignancies pose another problem, because 

malignancies such as brain tumors can appear in different locations in arbitrary shapes which 

makes the creation of a general atlas very difficult. 

One advantage of active contours is the mentioned ability to find subjective contours, that are 

physically not existing (Egger, 2012). Although they are computationally efficient to 

implement, they might converge to a local minimum instead of finding the global minimum 

during the iterative segmentation process (Egger, 2012) (Lechsel, 2007). 

In contrast to active contours, graph cut algorithms present an efficient way to compute a 

guaranteed convergence to the minimum of a global energy function (Davies, 2012) (Egger et 

al., 2012b). One of the disadvantageous is their limited flexibility, because the only 

changeable parameters are the graph’s weights and the cost function (Vezhnevets and 

Konouchine, 2005). 

The user input scribbles as well as presented fat pen tool input provide a simple and intuitive 

interactive methodology. However, the eventual control over the algorithm and resulting 

object are very limited, because the outline cannot directly be influenced (Artan, 2011) 

(Delong et al., 2011) (Birkbeck et al., 2009) (Blake et al., 2004). Only the approach of 

Jackowski et al. with its control point methodology provides true control over the 

segmentation result, because the control points can be manually dragged and placed. On the 

other hand, more effort is needed until a sufficient result is reached (Jackowski et al., 1999). 
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Examples of research result are given for vertebra segmentation in Zukic et al. (2012) where 

an average DSC of 78% was achieved and the methodology could be shown to outperform 

other methodologies. Neubert et al. (2011) developed a fully automatic segmentation 

methodology for vertebral and intervertebral bodies. They considered their result of DSC 85% 

for vertebra as “very good”, the DSC 81% for intervertebral bodies as “satisfactory”. 

In brain image segmentation, Pohl et al. (2007) achieved DSC values ranging from 70% - 

86% and considered their result as “quite high”. Other results are Babalola et al. (2008) with a 

DSC value of around 80% and Hausdorff distance of 3mm - 14mm, Khotanloua et al. (2009) 

with a DSC of 90% and HD of 4,92mm.. Corso et al. (2008) with a HD of 3mm – 127mm. 

In Martinez et al. (2012) a model based approach on the prostate, bladder and rectum in CT 

images yielded a Hausdorff distances of 5.98±2.2 mm for the prostate, 19.09±3.1 mm for the 

urinary bladder and 7.52±2.3 mm for the rectum. The results were considered “reliable” and 

outperforming the best multi-atlas based approach. 

Regarding clinical applications, manual segmentation is considered the gold standard, 

although it exhibits a high intra- as well as inter-variability and strongly depends on the user’s 

clinical experience (Bille and Schlegel, 2002) (Chang et al., 2011) (Elsa et al., 2010). Intra 

analysis of two manual segmentations was also investigated by Egger et al. (2013). For brain 

tumor images, the DSC value for two versions of the same physician revealed 90%, the 

comparison among versions of the different physicians revealed 88% and 86%, respectively. 

Other publications concerning intra observer variability are (Elsa et al., 2010, Letteboer et al., 

2004, Prastawa et al., 2004). 

The Varian, Inc. Smart Segmentation
TM 

tool could proof its efficiency and time saving 

potential and is part of the commercially available Eclipse© software for treatment planning. 

However, in most cases manual corrections of the fully automatic algorithms have to be 

performed. Furthermore, due to its mostly inhomogeneous appearance the rectum proofed to 

be especially difficult to segment in a validation through 600 data sets (Haas et al.) (Haas et 

al., 2008) (Huyskens et al., 2008) (Egger et al., 2012a). In Huyskens et al. (2008) the 

commercially available Varian Inc. Smart Segmentation® tool was evaluated by comparing 

automatic and manual segmentation results in a first step and asking clinicians to group the 

automatic result in either excellent (no manual modification needed), good (limited nr. of 

slices need modification), acceptable (several slices need modification) or not acceptable 

(result considered useless) in the next step. The automatic result which yielded a DSC of 73% 

for the prostate was considered “good to acceptable”. For the bladder, a DSC of 90% was 

achieved and the automatic result was considered “excellent to good”. For the rectum, a DSC 

of 52% was achieved and the automatic result was considered “acceptable to not acceptable”. 

In the evaluation of the Varian Inc. Smart Segmentation® tool given in Haas et al. (2008), the 

time for the algorithm to calculate a result, not including potential manual corrections, is 

targeted at 2 minutes to represent a time saving potential. 

 

 

 



 Preliminaries 

 37 

Table 1: Overview of the advantages and disadvantages of  clinical applications, segmentation algorithms and interactive methodologies in research 

 State of Clinical Applications State of Research: Segmentation Algorithms State of Research: Interactive 
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(Boykov 

and Jolly, 

2001) 

(Artan, 

2011) 

(Delong et 

al., 2011) 

(Ding and 

Yilmaz, 

2010) 

(Birkbeck et 
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3 Interactive Graph-Based Segmentation 

3.1 Task Definition 

As described in section 2.1.2 and section 2.1.3, in the course of Image Guided Interstitial 

Brachytherapy particularly and Radiology Treatment Planning in general, a crucial step in 

planning the applied amount and distribution of radiation is the segmentation of the tumor and 

adjacent organs-at-risk potentially exposed to radiation. With the gained 3D information of 

the tumor and adjacent Organs-At-Risk the positioning of the interstitial brachytherapy 

needles is controlled and the loading with individual radiation sources of each needle is 

calculated to accomplish an optimal radiation distribution on the tumor while sparing or 

limiting exposition to radiation for the Organs-At-Risk. This delineation of anatomical 

structures is mostly conducted manually by a physician with little computer assistance and 

represents a time-consuming task in the progress of planning radiological treatments.  

Due to its inhomogeneous appearance, the rectum/sigmoid colon as an organ-at-risk, has 

proven to be challenging to segment for fully automatic segmentation tools. Therefore, the 

rectum/sigmoid colon is segmented manually in clinical daily routine which represents a time 

and resource consuming task. To support clinicians in the course of this delineation, the aim 

of this thesis is to develop an interactive segmentation methodology for the rectum/sigmoid 

colon. 

The methodology is based on a graph network which by virtue of a calculated minimal cut 

through the graph network can find the object outline. As most fully automatic segmentation 

tools struggle with leaking in the progress of the segmentation of the rectum/sigmoid colon, 

the methodology has to show robustness and limitedness to leaking effects. Additionally, it 

has to allow direct and comprehensive control over the segmentation result in each slice by 

simple user interactions to improve the segmentation result where the algorithm is challenged. 

The evaluation of the segmentation methodology will be done by the Dice Similarity 

Coefficient (DSC) and Hausdorff distance (HD). For segmentation algorithms in the medical 

imaging domain DSC values of around 80% are common and considered successful (see 

section 2.3.5) 

In regard of the values mentioned in section 2.4 common for the medical imaging domain and 

the results of Martinez et al. (2012) and Huyskens et al. (2008) directly considering the 

rectum, a DSC result of around 80% and HD of 7,5 mm can be considered successful. 

Furthermore, in the evaluation of the Varian Inc. Smart Segmentation® tool given in Haas et 

al. (2008), the time for the algorithm to calculate a result, not including potential manual 

corrections, is targeted at 2 minutes to represent a time saving potential. 

 

3.2 Expected Advantages and Characteristics 

Fulfillment of the formerly mentioned requirements will cause a valuable time saving 

potential and thereby discharge from tedious manual segmentation tasks for the performing 

clinician. Eventually, it will open the clinician time for direct patient treatment, than 

monotonous delineation tasks. 
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With workload time saving for the clinician comes saving of costs for expensive medical 

human resources in the medical sector. 

Interactivity, few parameter inputs and direct control over the segmentation result by simple 

user interactions can increase the acceptance of segmentation tools among clinical personal 

and increase their use in daily clinical routine. Until today segmentation tools often lack those 

features and are complex in their handling methodologies because of extensive numbers of 

input parameters and demand excessive initial training. 

The developed methodology can be transferred to other fields of segmentation in the medical 

compound that proved to be challenging to segment, e.g. gynecological tumors or brain 

tumors. A more general context of application could be object segmentation in digital videos 

or photo sequences. 

 

3.3 Solution Structure 

In this section the basic concept of the developed segmentation scheme will be described 

generally. The following section 3.4 will describe the computational implementation and 

mathematical principles in further detail. 

Figure 21 illustrates the first steps of the algorithm. For a given object to segment (1), the user 

traces the object outline purely manual (2). The drawn contour (yellow) will be scaled by a 

specific factor and serve as template for a next slice where the segmentation is performed 

semi-automatically (3). 

 

Figure 21: Object outline (1), drawn user contour (2), scaled user contour serving as template (3) (© 

TUM-MIMED, 2012) 

After the contour has been drawn and scaled, the user skips to a next slice where a deviation 

from the drawn contour occurs (see Figure 22 (4)). The user sets a seed point which 

determines the template position (5). With the information of the seed point and template a 

segmentation result is calculated based on an underlying graph network (6). 
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Figure 22: Scaled contour serves as template for a segmentation (4), template position is 

determined by user-defined seed point (5), segmenation result is calculated (6) (© TUM-

MIMED, 2012) 

The calculated segmentation contour (see Figure 23 (7)) will serve as template for the 

segmentation in a next slice (8). The basic idea of this methodology is to dynamically adopt 

the template which frames the area where the segmentation is performed. The dynamic 

process of the template starts with the user-drawn contour in the first slice and alters its shape 

depending on the segmentation result in successive image slices. This methodology enables 

the algorithm to adapt to altering object shapes in the region of interest (ROI), but also to 

spare disturbing objects from the ROI. 

 

 

Figure 23: The calculated segmentation result (grey) (7) is scaled and serves as template for a next 

segmentation (blue) (8) (© TUM-MIMED, 2012) 

 

3.4 Solution Processes 

This section will go into detail of the implemented processes and further explain the user 

work flow (see section 3.4.1) and the structure of the implemented network (see section 

3.4.2). Furthermore, the information flow of the presented methodology (see section 3.4.3) 

and source code structure (see section 3.4.4) are explained in detail. Thereafter follows a 

description of the underlying mathematical implementations of graph networks (see section 

3.4.5) and its application on the image segmentation task (see section 3.4.6). 

 

3.4.1 User Workflow 

The user workflow of the presented segmentation algorithm consists of several steps and is 

fully illustrated in Figure 24.  
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Figure 24: User workflow of the presented interactive segmentation algorithm. First, the user traces 

the object contour. Second, the user skips to a next slice and determines if a deviation  to the drawn 

contour occurs. If not, the user skips to a next slice. If yes, a seed point is set and cut calculated. If the 

result is satisfying the user skips to a next. If not, the user can either drag a contour point, drag the 

seed point or reinitialize by redrawing the object contour (© TUM-MIMED, 2012) 

First, the user traces the complete contour of the target object in clockwise or counter 

clockwise direction. Figure 25 illustrates this step in an exemplary slice 0i  , where 

0 x y z v n      with n being the number of all object slices. 
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Figure 25: User traces object outline in slice nr. 0, (1) – (3) (© TUM-MIMED, 2012, MRI data from 

(Egger et al., 2012e)) 

Thereafter, the user skips to a next slice 0 x  or 0 y  (see Figure 26, (4), (5)) where either 

the end of the segmentation process can be determined if no further segmentation is necessary 

or the segmentation process can be continued. If the end is not reached yet, the user continues 

and has to evaluate if the drawn contour deviates from the object outline in the current slice. 

Therefore, the user drawn contour is shown in various slices deep to enable easy comparison. 

 

Figure 26: User skips slices where no noteworthy deviation from the last contour occurs (© TUM-

MIMED, 2012, MRI data from (Egger et al., 2012e)) 

If no noteworthy deviation occurs, the user skips to the next slice. This feature is particularly 

important in the context of comparatively small images slice thicknesses, e.g. 1.6mm. With a 

small image slice thickness, the change in shape of the object is relatively limited from one 

slice to another which makes skipping of slices, where no large change in shape occurs, a 

valuable time saving feature in the segmentation process. 

If the user skips through the slices and reaches a slice where a deviation occurs (e.g. Figure 27 

(6)), a seed point can be set (7) and cause the algorithm to calculate a segmentation (8). At 

this stage, the user can choose between 4 different options. In the ideal scenario the calculated 

cut is satisfactory and the user can complete the segmentation of this slice by skipping to the 

next slice. 

In case medium size segmentation mismatches occur, the user can interactively drag the seed 

point, which causes the algorithm to compute another segmentation result (see Figure 27 (9), 

(10)). If a satisfactory result was computed, the user continues by skipping. This option 

represents the most frequent type of improvement. If further improvements are necessary, the 

user can drag the seed point again, or employ additional options of improvement. 
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In case minor segmentation mismatches occur at a particular location, the user can 

interactively drag a contour point and improve the segmentation result (see Figure 27 (10), 

(11)). If thereafter the segmentation result is satisfactory, the user continues by skipping to the 

next slice. If the result demands improvements, further enhancements can be employed. 

 

Figure 27: Deviation from the previous contour (6), user sets seed point (7), segmentation is calculated 

(8), improvement by interactive dragging of seed point (9), new calculated segmentation result (10), 

interactive improvement of contour by dragging contour control point (11) ) (© TUM-MIMED, 2012, 

MRI data from (Egger et al., 2012e)) 

In case of major segmentation mismatches (see Figure 28 (12)), the user can outline the object 

again in the current slice and thus reinitialize the algorithm (see Figure 28 (13), (14)). This 

option of improvement rarely occurs and might merely be necessary where the object shape 

vastly changes from one slice to another, especially at locations where the organ bends from 

the image z-axis directing through the image slices. 

 

Figure 28: Major deviation of the segmenation result from the object outline (12), reinitilization by 

drawing new object outline (13), new segmentation result (14) ) (© TUM-MIMED, 2012, MRI data 

from (Egger et al., 2012e)) 

After a satisfactory segmentation result was found and the user skips to a next slice, the last 

calculated object contour serves as reference to determine a deviation to the current slice. 
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After all slices where the object appears have been segmented, the user completes the 

segmentation process by automatic interpolation of the skipped slices and voxelization of the 

final object. 

 

3.4.2 System Overview 

The developed segmentation algorithm consists of two main components illustrated in Figure 

29. The main component is a C++ project InteractiveCut developed in Microsoft Visual 

Studio which realizes the graph cut approach as well as parts of the interactive methodology. 

In the C++ project embedded is the publicly available max flow/min cut library developed by 

Boykov and Kolmogorov (Boykov and Kolmogorov, 2004) (Kolmogorov, 2010). It provides 

several classes and methods to setup a graph network and eventually calculate a minimal cut 

of the given network. The algorithm is further described in section 3.4.5. 

 

Figure 29: System overview: The C++ codes of the InteractiveCut and Boykov Library are 

implemented in a Microsoft Visual Studio project, which is embedded in a MeVisLab network. The 

MeVisLab network imports the image and manual segmentation and exports the object contour and 

voxelized 3D object (© TUM-MIMED, 2013) 

The InteractiveCut source code is embedded into a MeVisLab® (MeVisLab, 2012) network 

environment. MeVisLab provides a modular framework for the development of medical 

image processing and visualization tasks. New C++ algorithms such as the InteractiveCut 

code can be integrated into MeVisLab through a Dynamic Link Library (DLL) file. The 

MeVisLab network loads the image file as a Nearly Raw Raster Data (Nrrd) file. The 
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segmentation results in form of the object contour slices and voxelized 3D object are exported 

as Nrrd files as well. 

For evaluation purposes of the segmentation algorithm, additional manual segmentation data 

can be imported as Nrrd file and compared to the algorithmic segmentation. Results are a 

Dice Similarity Coefficient as well as Hausdorff distance. Both coefficients are further 

described in section 4.1. 

 

3.4.3 Network 

The network implementation is based on MeVisLab® version 2.3.1 with Qt version 4.8.0 

(MeVisLab, 2012). The MeVisLab network is structured in seven distinct groups which 

consist of predefined MeVisLab modules. The complete network is given in Figure 30. 

 

 

Figure 30: Implemented MeVisLab® network consisting of 7 disctinct groups (© TUM-MIMED, 

2013) 

The network modules generate a specific information flow through the network which 

handles all user interactions and segmentation calculations. Figure 31 presents an illustration 

of this information flow through the network. 
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Figure 31: Illustration of the implemented MeVisLab® network and information flow (© TUM-

MIMED, 2013) 

The information flow is as following. After the image file is loaded, the image is transferred 

to the InteractiveCut module. This module represents the core of the network and incorporates 

the C++ code via dll file. Besides the image file input, the module imports a markerlist 

representing the user drawn contour from the User Contour group. A markerlist is a 

MeVisLab specific class which handles arrays of 3D vector positions. 

The User Contour group (see Figure 32) handles all information exchange between the user 

and the InteractiveCut module (see Figure 34). For instance, it transforms the contour drawn 

by the user into a polygon consisting of vertices which are passed to the InteractiveCut 

module as markerlist. The group also handles the user provided seed point position and 

interactive seed point movements and passes this information to the InteractiveCut module. It 

also updates the graph template shape in case the object contour points are dragged for 

improvement. 
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Figure 32: User Contour group (4) handling user interactions (© TUM-MIMED, 2013) 

With the information of the image, the user drawn contour and a given 3D seed point position, 

the Interactive Cut module generates a graph network with the provided seed point at its 

origin and the shape of the user drawn contour. Thereafter, according to the graphs nodes, 

image voxel grey values are sampled and the graphs edges weights are determined. The 

weighted graph is then evaluated by the Boykov max flow/min cut algorithm to calculate the 

object segmentation. The InteractiveCut module’s calculated segmentation result is passed 

back to the network into the Marker group (see Figure 33). The output comprises several 

markerlists including the current seed point, the graph template inherited from the user drawn 

contour, the graph nodes and finally the graph nodes which are part of the calculated cut. 

 

Figure 33: Marker group (2) handling all calculated marker outputs (© TUM-MIMED, 2013) 

The cut nodes are passed to the Object Contour group, which generates a contour 

segmentation object (CSO) from the cut markerlist and handles all updates in case of seed 

point or contour point dragging. The sum of all generated CSOs is stored in a CSO list. After 
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all slices have been segmented, an automatic interpolation is applied to the CSO list to 

generate CSOs in slices which have been skipped by the user. The final CSO list is stored as 

segmentation result. It is also passed to the Voxelization group which renders the CSO list in a 

3D object. 

The Work Panel module handles all visualizations. In this module the image is shown as well 

as seed points and segmentation results. Furthermore, the Work Panel module handles all user 

interactions. Here, the user draws the object contour, but also performs all improvements of 

the segmentation result in form of dragging the seed point, dragging the object contour points 

or reinitializing the algorithm with a new user drawn contour. 

 

 

Figure 34: Work Panel (3) group, InteractiveCut modul and Image load modul (1) (© TUM-MIMED, 

2013) 

For evaluation purposes the Evaluation group receives the sum of all object contours in form 

of a CSO list and evaluates it against the provided manual segmentation data to calculate a 

DSC value and Hausdorff distance. The DSC value and Hausdorff distance, together with 

their implementations are described further in section 4.1. 

 

3.4.4 InteractiveCut Module 

The InteractiveCut module C++ source code can be partitioned in several distinct states where 

each state fulfills a specific task and executes individual functions. The module itself is 

designed as observer module where a MeVisLab specific method (handle notification) is 

called each time on changes of the input fields. This enables the design of the interactive user 

workflow. Depending on the user input, the program transits from on state to another to fulfill 

the segmentation task (see Figure 35). 

The sequence starts and transits into the Get User Contour state as soon as the User Drawn 

Contour is available. The GetUserContour( ) function loads and casts the input contour. 

Additionally, a flag TemplateFlag is set false to indicate the use of the user drawn contour as 

graph template. 

At the time the user has skipped slices and set a seed point, the program transits into the Get 

Template state. Here, the GetTemplate(TemplateFlag) function, depending on TemplateFlag, 

decides if the user drawn contour or last cut contour is used as template. On the state exit, 

TemplateFlag is set true to enable the use of the calculated cut as template in a next slice. 
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Figure 35: State transition diagram of the implemented InteractiveCut source code (© TUM-MIMED, 

2013) 

The state Calculations Shape performs various calculations on the provided contour, which 

are described in detail in section 3.4.6. First, all the contour markers are sorted in clockwise 

order. Thereafter, the centroid of the contour polygon is calculated to determine the seed point 

position. From the seed point position the contour is scaled homogenously in the x-y-plane 

which results in the actually shape of the graph template. 

With the information of the seed point and template position, the state Calculations GV 

samples grey values in the seed point area and template location to gather information of the 

object grey value distribution. Those values are used to determine the graphs weights in the 

next state. 

In state Setup Graph, the current seed point position is specified in a first step. Thereafter, the 

nodes of the graph are distributed to create the graph network over the image. The edges 

between the graph’s nodes are weighted depending on sampled GV between those nodes. 
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After the creation of the graph network, it is passed to the Boykov library where the minimal 

cut is calculated. The calculated minimal cut result is pushed back to the MeVisLab network 

as markerlist, together with the seed point, template and graph node markerlists. If the cut is 

calculated successfully, the program waits for further user input. 

In case the seed point is dragged for improvement, the program switches back to the Setup 

Graph state where a new graph network is created depending on the new seed point position. 

Note that the graph template stays the same, although its location is altered depending on the 

seed point shift. 

In case a contour marker is dragged, the contour is updated externally in the MeVisLab 

network. However, the template shape is updated, such that the altered shape of the 

segmentation result is used as template in a next slice. Thereafter, if the cut is not satisfying 

the user can drag the seed point to generate a new cut. In case the cut was satisfying the user 

continues to a next slice. 

In case a new contour is drawn by the user, the current template is deleted and the new 

contour drawn by the user is taken over as (new) template. Additionally, the flag Template 

Flag is set false so that the user drawn contour is taken as template instead of the last cut. 

As soon as a satisfying cut is calculated the user continues the segmentation process by 

skipping to a next image slice and setting a new seed point. Thereafter, the program transits 

into the Get Template state where the type of template is determined depending on the 

Template Flag and the formerly described process repeats in the current slice. 

 

3.4.5 Graph Networks 

The following section describes the mathematical principles of graph theory this thesis is 

based on. A particular focus lies on simple, undirected graph networks, the paradigm of max 

flow/minimal cuts through a graph network and the applied algorithm to calculate minimal 

cuts. 

A graph is defined by a pair ( , )G V E  consisting of a finite set of V ≠ ∅ and a set of E ≠ ∅ of 

two element subsets of V. Thereby, the elements v of the set V represent the vertices or nodes 

of the graph and are referred to as ( )V G . The elements e of E represent the edges linking two 

vertices, whereby { , }i x ye v v . The set of edges of a Graph G is referred to ( )E G . The 

number of vertices in a graph is denoted by | |n V  and the number of edges by | |m E  

(Jungnickel, 2005). A common way to picture a graph is by depicting vertices as dots and to 

connect vertices by lines to depict edges (Gibbons, 1985). 

 

Simple, undirected graphs 

An edge { , }x ye v v  is considered a self-loop if x yv v . A parallel edge cannot be specified 

by its vertices alone, but only by its order. In Figure 36 (right) a graph with a self-loop and a 

parallel edge is shown. A graph is called a multi graph if the graph contains parallel or self 

loops. It is called a simple graph if it does not contain parallel edges or self loops (Gibbons, 

1985). 
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In some cases it is advantageous to assign a direction to each edge of a graph. This is called a 

directed graph. A simple, directed graph consists of an ordered pair ( ( ), ( ))V G E G  where 

( ) ( ) ( )E G V G V G  . If a simple, directed graph fulfills: 

 ( , )  ( ) ( , )  ( )x y y xv v E G v v E G   (3.1) 

it is a simple, undirected graph (Knauer, 2011) (Figure 36 (left)). The course of this thesis will 

be restricted to simple, undirected graphs. 

 

 

Figure 36: Illustration of a simple, undirected graph with n 5  nodes and m 7  edges (left) and a 

multi, directed graph with a parallel edge and a self loop, n 4  nodes and m 6  edges (right) (© 

TUM-MIMED, 2013) 

 

Paths and Connectedness 

Let 1( , , )ne e  be a sequence *E  of edges in a graph G . If there is a sequence of vertices 

0( , , )nv v , where 1{ , }i i ie v v  for 1, ,i n  , then *E is called a walk. If furthermore 

0 nv v , the walk is called a closed walk. In a sequence *E , where ie  is distinct, the walk is 

called a trail. In case a closed walk exhibits distinct edges, the closed walk is called a closed 

trail. In a sequence *E  not only ie  but also also jv  might be distinct, what makes the trail a 

so called path. A closed trail where 3n   and jv  are distinct, excluding 0 nv v , is defined as 

a cycle. Regarding Figure 36 (left), the set of (1,4,3,5,4,3)  represents a walk. In contrast 

(1,4,5,2,3,5)  is a trail. The set of (1,4,3,5)  is a path and (1,4,3,5,2,1)  is a cycle. To denote 

the length of any of the presented cases the notation 

 1 2
0 1 2 1:       n

n n

e e e
W v v v v v   (3.2) 

where n  represents the length of W . 

The concept of connectivity is a basic idea of graphs and closely related to network flow 

problems and graph cuts, which are described in following sections. A graph G  is 

considered connected if any pair of vertices out of the set ( )V G  can be linked by a path. In 

case all possible pairs of vertices of G can be linked by a path, then the graph G  itself is 
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called connected. If two vertices ( , )x yv v  are connected by a path of length 1n   (a single 

edge), then those vertices ( , )x yv v  are called adjacent (Jungnickel, 2005, Diestel, 2005).  

For a given graph ( , )G V E  a subgraph is defined as a graph H  such that ( ) ( )V H V G  and 

( ) ( )E H E G  and edges in H  are assigned in the same manner than in G , then H  is called 

a subgraph of G  and denoted H G . A connected component sG  of G is defined by a 

subgraph with a set of vertices SV V and set of edges sE E , which fulfills two properties: 

sG  itself is connected and ( , )   : ,x y s x y se v v E v v V V   (Jungnickel, 2005, Diestel, 2005). 

Figure 37 illustrates a graph ( )G V  with (1,2,3,4,5,6,7,8)V   and a subgraph ( )s sG V  with 

(3,5,6)sV  . Graph G  itself is not connected, however it consist of two connected 

components defined by the vertices (7,8) V  and (1,2,3,4,5,6) V (West, 2001). 

 

 

Figure 37: A simple, undirected Graph G  consisting of two connected components (1,2,3,4,5,6) and 

(7,8). Note that the G itself is not connected. The set of vertices (3,5,6) represent a subgraph of G (© 

TUM-MIMED, 2013) 

 

Networks and Flows 

A graph ( , )G V E  can be interpreted as a network, where a specific amount of flow ( , )x yf v v , 

mapping 0: ( ) ( )f V G V G   , is carried from one node to another. Each edge 

( , ) ( )x ye v v E G  has an upper limit of flow that can pass the edge, defined by a capacity 

( , )x yc v v , mapping 0: ( ) ( )c V G V G    (Diestel, 2005). 

In a flow network there are two distinct vertices seen as the start and end point. At these 

points flow will enter and leave the network. The start vertice is denoted as source s , where 

the flow of material starts. The end vertice is denoted as sink t , where flow material arrives 

after passing the network (Gibbons, 1985) (see Figure 38). 

For consistency, a network has to fulfill several conditions. First, for any vertice ,yv s t  the 

amount of flow entering and leaving yv  has to be equal and thus: 

 
( )

( , ) 0
y

x y

v V G

f v v


   (3.3) 
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Second, flow in direction x yv v  has to be denoted negatively in the opposite direction 

y xv v , thus: 

 ( , ) ( , )x y y xf v v f v v   (3.4) 

Third, the flow in an edge x ye(v ,v )  can never exceed its capacity x yc(v ,v ) , thus: 

 ( , ) ( , )x y x yf v v c v v  (3.5) 

 

The overall value of flow ( )F G  for a network ( , )G V E  is defined by the net flow leaving the 

source s : 

 ( ) ( , ) ( , )
x x

x x

v V v V

F G f s v f v s
 

    (3.6) 

The maximum flow of a network describes a problem where flows ( , )x yf v v  shall be assigned 

to all edges of ( , )G V E  such that the above given conditions apply and the flow ( )F G  from 

the source to the sink is maximized (Gibbons, 1985).  

 

 

Figure 38: Example of a flow network with the source s  and sink t . The flows and capacities are 

denoted by ( , ), ( , )x y x yf v v c v v (© TUM-MIMED, 2013) 

 

Graph Cuts 

In terms of graph theory, an s-t-cut or cut separates the vertices ( )V G  of a graph G  into two 

disjoint subsets. The subsets consist of a set S  related to the source s  and a set T  related to 

the sink t . The cut is denoted by ( , ) :  ( )C S T s S t T S T S T V G        . The 

cut-set STC  of a cut describes edges whose vertices are part of the set S  and the set T  and is 

described by the cut ( , )C S T  where {( , ) ( ) | , }x y x yv v E G v S v T   . The capacity of a cut 

C  denoted by ( , )cap S T  is given by the total sum of the capacities of the edges of the cut-set 

STC  leaving S  (Boykov and Veksler, 2006) (West, 2001) (see Figure 39): 

 
, |( , )

( , ) ( , )
y y x y

x y

v S v T v v E

cap S T c v v
  

   (3.7) 
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Figure 39: A cut C  in the network example of Figure 38. The subset { ,1,2}S s  (red) is related to 

the source and the subset {3, }T t  (green) is related to the sink. The cut-set STC  consists of the set 

of edges {(2,3),(3,1),(1, )}t  and a capacity of ( , ) 2 2 4cap S T     (© TUM-MIMED, 2013) 

 

Max Flow/Min Cut Theorem 

The problem of finding the maximum flow in a network correlates with the problem of a 

finding the cut of minimal capacity among all possible s-t-cuts. According to the theorem of 

Ford and Folkerson (Ford and Fulkerson, 1962) the maximum flow value in a network equals 

the cost of the minimum cut among all possible s-t-cuts. Generally speaking the flow through 

any network is limited by its bottleneck capacities. Although at some edges higher flow might 

occur, the maximal total flow is limited by the flow through its bottleneck (Boykov and 

Veksler, 2006) (Gibbons, 1985): 

  ( )  ( , )max F G min cap S T  (3.8) 

 

Boykov-Kolmogorov Algorithm 

Since Ford and Fulkerson first stated their theorem various algorithms have been developed to 

solve max-flow min-cut problems. The algorithm published by Boykov and Kolmogorov 

(Boykov and Kolmogorov, 2004) is currently considered the fastest algorithm for the 

application of computer vision graph cuts (Schmidt et al., 2009). Their publicly available C++ 

library (Kolmogorov, 2010) was used to calculate a minimal cut among the set up graph 

described in section 3.4.6. 

The algorithm belongs to the group of algorithms based on augmenting paths and implements 

two types of search trees, one tree starting from the source and one starting from the sink. 

Nodes that are not part of either tree are “free” nodes. Within these search trees, inner nodes 

are considered “passive” while nodes at the border in contact with other nodes are considered 

“active”. Active nodes are allowed to grow and thereby come in contact with nodes of other 

trees. In case an active nodes comes in contact with a node of the other tree an augmenting 

path is found. 

The algorithm follows 3 repeating stages: 

 Grow: trees from source and sink grow until they come in contact and make and 

s t  path 
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 Augmentation: the s t  path is augmented, while search trees split, such that 

disconnected nodes remain as orphans 

 Adoption: trees from source and sink are restored by assigning each orphan to either 

tree 

When the adoption stage is completed, the algorithm repeats with its grow stage. Termination 

is reached when the trees from source and sink cannot grow anymore, because no active 

nodes are left, such that all nodes are either part of the source tree or the sink tree. The 

corresponding separation of nodes represents the minimum cut ( , )C S T . 

 

3.4.6 Graph-Cut Implementation 

The objective of the graph construction is to transfer the segmentation problem into a simple, 

undirected graph ( , )G V E . Nodes are distributed originating from a user provided seed point. 

Those nodes sample the grey value (GV) of their respective underlying voxels. The difference 

in GV between neighboring voxels { , }x yv v  determines the graph’s weights ( , )x yc v v . After 

the graph is set up and all edges are assigned their weights, a minimal cut is calculated which 

separates all nodes into either a group associated to the object represented by the source s or a 

group associated to the background represented by the sink t ( see Figure 40). 

 

 

Figure 40: Representation of the segmentation task as a graph network from a source s to a sink t. The 

image is seperated from the background through a minimal cut (© TUM-MIMED, 2013) 

 

Graph Template 

In order to define the graph’s shape, diameter and area to spread within, a graph template 
3T   is introduced 

 0{ , , }: 0nT M M n      (3.9) 
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The markers ( , , )t x y zM m m m  of template T are vectors in 3 , where :zm   , resulting in 

a two dimensional template. The markers tM  of template T  are denoted by ( )tM T . Various 

predefined shapes can be implemented to serve as a template, e.g. a square-shape, triangle-

shape or heart-like-shape (see Figure 41 (2), (3), (4)).  

 

 

Figure 41: Various graph template shapes, template (green and blue), seed point (white), segmenation 

result (yellow): Raw image (1), square template (2), triangle template (3), heart shaped template (4), 

dynamic template: user drawn or previous cut, in this case: user drawn template (red) (5) (© TUM-

MIMED, 2013, MRI data from (Egger et al., 2012e)) 

Although predefined shapes might result in sufficient results in some images slices, they are 

not capable of robustly handling the altering two dimensional shapes of the rectum/sigmoid 

colon in succeeding image slices. Moreover, in case the ROI is fully covered with a square 

template, other objects might be included as well in the square area which can negatively 

influence the segmentation result. In Figure 41 (2) it can be seen that the cut (yellow line) 

incorporates parts of the characteristic dark obturator. The proximity of the dark obturator to 

the rectum/sigmoid colon frequently compromises the segmentation result, as the transition to 

the dark obturator causes over proportional high graph weights and results in a cut at this 

location. An approach to spare such objects from the ROI provides a user-defined template 
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such as Figure 41 (4). It can be predefined or setup by multiple user clicks and circumventing 

disturbing objects such as the obturator. However, the user effort to setup the template 

compared to the information gained about the ROI is relatively high. A more advantageous 

approach provides a user drawn template, where the user outlines the object contour. With 

this approach not only the exact shape of the object in the respective slice is known and can 

be employed further, but also exact information about the object’s contour grey values and 

grey value distribution inside the object can be extracted. Such an approach can be seen in 

Figure 41 (5), where the red outline is a user drawn contour used as template for the graph in 

(5). 

Furthermore, complex templates such as a user drawn template or a template taken from the 

last cut inherent higher robustness in cuts resulting from them, than other graph template 

shapes such as squares or triangles. With the same number of nodes V spread from the seed 

point to the template border and a 0   (see section 3.4.6), cuts from complex templates 

yield the exact same shape as the previous shape. 

 

Sorting of Template Markers 

In the context of a user provided template for the graph, the user might draw a template in 

clockwise or counter-clockwise order. To calculate the centroid of polygon, set up the graph 

and distribute its nodes it is necessary to arrange the provided template in a clockwise order. 

Therefore, consider a template 3T   consisting of a limited, unordered set of three 

dimensional markers tM . To sort the markers tM  of the given template T , consider the 

markers 2 \t zM m  . First, the position of the mass center { , }x yMC MC MC  of the 

given template T  is calculated in the x-y-plane by 

 
0

1

1

n

x x

i

MC m
n 



  (3.10) 

 
0

1

1

n

y y

i

MC m
n 



  (3.11) 

 

Thereafter, the polar angles between each marker tM  and the x-coordinate is calculated 

referring to the mass center MC: 

 
, ,

, ,

arctan( )
y i y i

i

x i x i

m MC
tan

m MC





 (3.12) 

With the information about the angle to the x-plane of each vector tM , the vectors can be 

sorted by the following algorithm: 

 

Algorithm 1: Pseudocode of the sorting algorithm 

 

1. :  ( , )Procedure Sort tan v  

2. flag true  

3. : 0      i i n and flag true      

4.                 flag false  
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4.               : 0  1j j n      

5.                             1 j jif tan tan   

6.                                          tan jtemp tan  

7.                                          vec jtemp M  

8.                                          1j jtan tan   

9.                                          1j jM M   

10.                                          1j tantan temp   

11.                                          1j vecM temp   

12.                                          flag true  

 

Thereafter, the sets tM  as well as ttan  are sorted in a clockwise order. 

 

Seed Point Position 

At the origin of every graph lies a specific point from where the nodes of the graph are 

distributed. This point is called the seed point SP of the graph. The seed point can be 

automatically determined from the provided template T . 

The obvious location for the seed point is the center of mass of the given template T 

calculated by equations (3.10) and (3.11). However, this calculation only yields useful results 

in some rare situations when all markers tM T  are uniformly and symmetrically distributed. 

Generally, equations (3.10) and (3.11) find the center of mass of a massless polygon with 

equal mass points at the marker positions. Figure 42 illustrates this effect with three different 

polygons. Although the spanned area of all three shapes is equal the position of the mass 

center varies. 

 

Figure 42: Center of mass of different shapes. The position of the center of mass varies depending on 

the number of markers, although the spanned area stays equal (© TUM-MIMED, 2013) 

Depending on the shape of the user drawn template or respective calculated cut, the markers 

tM  of template T are non-uniformly distributed and therefore equations (3.10) and (3.11) 

cannot be employed. Instead, the so called centroid of polygon CP will be calculated and used 

as seed point position (see Figure 43). The centroid of a polygon defined by n markers tM  

yields the center of mass of an area of equal mass distribution spanned by the markers tM . 
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For the markers 3 : { , , } 0 0t t x y zM M m m m x n y n        , it is calculated by the 

following equations (Bourke, 2007) (Heckbert, 1994): 

 
1

, , 1 , 1 , 1

0

1
( )( )

6

n

x x i x i x i i x i i

i

CP m m m y m y
A



  



    (3.13) 
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i

CP m m m y m y
A



  



    (3.14) 

 z zCP m  (3.15) 

 

Thereby, A is the spanned polygon’s area defined by 

 
1

, , 1 , 1

0

1
( )

2

n

x i y i x i i

i

A m m m y


 



   (3.16) 

 

In the process of calculation it is assumed that 

 , , ,0 ,0, ,x n y n x ym m m m  (3.17) 

 

The seed point { , , }x y zSP sp sp sp  of a given template T is defined  

 :x xsp CP  (3.18) 

 :y ysp CP  (3.19) 

 :z zsp CP  (3.20) 

 

 

Figure 43: Illustration of the calculated mass center (green) and centroid of polygon (pink) of two 

different templates (© TUM-MIMED, 2013) 

 

This effect is particularly important regarding the dynamic adaption of the template over 

consecutive segmentation slices. Depending on the object shape and calculated minimal cut, 

the template can become more and more rugged over several image slices such that the 

template marker distribution becomes less uniformly and the difference between the mass 
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center and centroid increases. This effect impairs an optimal node distribution over the object 

which causes decreased sampling of the object’s grey values. 

 

Scaling of Template 

A given template T , either user drawn or the last calculated cut, will be scaled by a specific 

size s  in order to be used as template for a next cut. To scale the template about a fixed point, 

the template first has to be translated so that the fixed point is at the coordinate origin. Then, 

the scaling is computed and the inverse translation is applied to shift the template back to its 

original coordinates. The scaling process used is based on homogeneous coordinates (HC) 

where vector translations can be represented as matrix multiplications instead of vector 

additions (Godse, 2008). Consider a template T  consisting of a set of markers 
3

, ,\ : { , }t z t x t y tM m M v v   . For the fixed point used for scaling the formerly calculated 

centroid of the template polygon { , }x yCP CP CP  will be used. The equation for scaling and 

rotation of a given vector 2{ , }p x y   with CP as the fixed point is given by 

 ( )   ( )    f p p T R S T p    (3.21) 

Thereby, T  is the translation matrix given by 

 

1 0

0 1

0 0 1

x

y

CP

T CP

 
  
 
  

 (3.22) 

which translates p such that CP is at the origin {0,0}. The matrix S  is the scale matrix given 

by 

 

0 0

0 0

0 0 1

x

y

s

S s

 
 
 
  

 (3.23) 

where { , }x ys s s  is are the specific scale factors in the x and y direction. In the course of this 

work x ys s  will be used at all times and denoted by the scale factor sf. The matrix R  is the 

rotation matrix to rotate the template along the x axis with angle  . It is given by 

 

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

R

 

 

 
 
 
  

 (3.24) 

 

However, in the course of this thesis the template will not be rotated and thus R E , where E 

is the identity matrix. 

 

To scale the template T with a specific scale factor s, all markers tM  of T are scaled by 

equation (3.21) eventually mapping the original template T  to the scaled template T  
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 :z T T  (3.25) 

 

Figure 44 illustrates this procedure for a given template. In this case a cut (1) (yellow line) is 

used as a template T. The markers of T are scaled by a scaling factor s around the centroid of 

the polygon (2) (white dot) defined by T. The scaled template T is illustrated by the green line 

(2), which is used as a template for the graph in a next slice (3) (green dots). 

 

 

Figure 44: A given template is scaled by a certain scaling factor s with the centroid of the polygon as 

the fixed point. The cut in (1) (yellow line) is taken as a template and scaled (2) (green line), which is 

then used as a template for a next cut (3) (green dots) (© TUM-MIMED, 2013, MRI data from (Egger 

et al., 2012e)) 

 

Node Distribution 

From a given seed point { , , }x y zSP sp sp sp  a number of rays :1ir i k   are spread in 

uniform angles. For each ray ir  the intersection point IP with T is calculated. The length of 

each ray ir  is defined by the distance between SP and the intersection point IP of T. 

 | | | |i rir IP SP   (3.26) 

Along all rays ir  a number of nodes , : 0i nV n u   is distributed in equal distances from the 

seed point to the template border (see Figure 45). The node ,0iV  indicates the node closest to 

the seed point, ,i uV  indicates the last node of ray ir . Furthermore, each node ,i nV  coincides 

with a voxel of the image I. Moreover, the graph network requires the implementation of two 

distinct virtual nodes that are not represented by a voxel of image I, the source s and the sink t 

(Boykov and Jolly, 2001). 
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Figure 45: Graph node distribution from a given template and seed point position (© TUM-MIMED, 

2013, MRI data from (Egger et al., 2012e)) 

Due to the equal amount v of nodes spread along each ray r regardless of the length of each 

ray r, the seed point position is particularly important to accomplish an equal node 

distribution within the template. It is that the centroid of the template is used instead of the 

mass center. 

Figure 46 illustrates this effect: image (1) on the left shows the difference between the mass 

center and centroid location for the given polygon and in image (2) on the right the node 

distribution is based on the mass center which causes a concentration of nodes in the area 

above the seed point. The centroid position will decrease this effect and cause a more equal 

node distribution. 

 

Figure 46: Difference between the mass center (green) and the centroid (pink) (1), and corresponding 

node distribution based on the mass center (2) (© TUM-MIMED, 2013) 

 

Sampling of Grey Values 

Each node ( )iV V G  is a set of four, comprising , , , , , , ,{ , , , }i x i r y i r z i r i rV v v v gv  with the node’s 

3D position and voxel’s grey value. To gather information about the object’s grey value 

outlook, the mean grey value in an area a  around the seed point SP determined by factor   is 

calculated according to 

 ( ) : ( ) | 0i i ia gv V V V G i k       (3.27) 
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In the same way a CmeanGV  of ( )i Cgv M C  is calculated among all markers CM  of the 

minimal cut C of a previous slice, to gather information of the grey values among the object 

contour. 

 

Interactive Seed Point Dragging 

The segmentation result strongly depends on the seed point position, as it determines the 

position of the graph’s nodes and thereby the GV samples to calculate the graph’s weights and 

the cut result in the last step. 

In case an object contour represented by a sharp dark to bright area is not sampled due to a too 

little sampling rate, the cut will perform differently and the quality of the segmentation result 

will decrease. The star like distribution of nodes inherits this problem such that areas further 

away from the seed point are sampled with a smaller sampling rate per area than areas closer 

to the seed point. 

However, by interactively dragging the seed point different voxels of the image are sampled 

with the graph’s nodes and the user intuitively and unawarely increases the sampling rate per 

area defined by the number of nodes of graph G and the area of template T  

 
| ( ) |

( )
s

V G
f

area T
  (3.29) 

 

Graph Weights 

So far the nodes V of the graph G(V,E) have been implemented. The next step to set up the 

complete graph network is to implement the graph’s edges E. In the following, three different 

types of edges can be distinguished (see Figure 47): 

 Z-weighted edges are inter-edges connecting the seed point SP with the first node ,0iv  

of each ray ir . They also connect all neighboring nodes , 1,( , )i n i nv v   of the same ray ir . 

They are denoted by the subset zE E  

 XY-weighted edges are intra-edges connecting nodes , 1,( , )i n i mv v   of directly 

neighboring rays 1,i ir r . They are denoted by the subset xyE E  

 T-weighted edges connect each node , ( )i nv V G  with the source s and the sink t. They 

are denoted by the subset TE E  
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Figure 47: Illustration of three different graph weight types: xy-weights, z-weights and t-weights (© 

TUM-MIMED, 2013) 

 

Z-Weights 

According to (Li et al., 2006) the capacity , , 1( , )i n i nc v v   for all edges , , 1( , )i n i n Zv v E   is set to a 

maximum value indicated by  . 

 , , 1 , , 1( , ) : ( , )i n i n z i n i ne v v E c v v     (3.30) 

Under the assumption that the calculated minimal cut separates the graph G(V,E) by 

( , )C S T , such that { }s S t T    each ray r has to be cut at least one time. Setting all z-

weights to a value of   furthermore guarantees that each ray r is cut only one time which 

cost 1 per ray. Cutting the same ray twice or more costs n   which will not result in 

the minimal possible cut set, thus each ray is cut exactly one time. 

Because of this paradigm, it is hardly possible to alter the z-weight cost function and assign 

values different to  . In case it is lowered to an effective value, similar to t-weight values, 

the possibility of cutting the same ray twice increases, which will not result in an optimal 

segmentation result. 
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T-Weights 

The allocation methodology of T-Weight capacities to all edges TE E(G)  is crucial to the 

calculated segmentation result. The algorithmic implementation is given as pseudo code in 

Algorithm 2 and can be separated in four distinct tasks that will be explained in further detail. 

 

Algorithm 2: Pseudo code of the implementation of capacities 

to all T-Weighted edges ( )TE E G  

 

1. : ( ( , ))Procedure TWeights G V E  

2. : 0 1i i k      

3.               ,0( , )ic s v   

4.               ,0( , ) 0ic v t   

5.               , 1( , ) 0i uc s v    

6.               , 1( , )i uc v t   

7. 
1

Phi
s

  

8. { 1}nPhi floor u Phi    

9.  if Flag false  

10.              * SPmeanG meanGV  

11.  else  

12.              * CmeanGV meanGV  

13. : 0 1i i k      

14.               : 0 1n n u      

15.                             , 1( ( ) *)i nPre abs gv v meanGV   

16.                             ,( ( ) *)i nAct abs gv v meanGV   

17.                             ( ( ))Tif n nPhi nPhi WF    

18.                                           ,( , )i nc s v   

19.                                           ,( , ) 0i nc v t   

20.                             ( ( ))  ( ( ))T Tif n nPhi nPhi WF and n nPhi nPhi WF       

21.                                            if flag false  

22.                                                          ( ) 0if Act Pre   

23.                                                                       ,( , ) ( )i nc s v abs Act Pre   

24.                                                                       ,( , ) 0i nc v t   

25.                                                           else  

26.                                                                       ,( , ) 0i nc s v   

27.                                                                        ,( , ) ( )i nc v t abs Act Pre   

28.                                            else  

29.                                                             ( ) 0if Pre Act   

30.                                                                         ,( , ) ( )i nc s v abs Act Pre   

31.                                                                         ,( , ) 0i nc v t   

32.                                                              else  
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33.                                                                          ,( , ) 0i nc s v   

34.                                                                         ,( , ) ( )i nc v t abs Act Pre   

35.                              else  

36.                                           ,( , ) 0i nc s v   

37.                                           ,( , )i nc v t   

Under the assumption that the user-defined seed point is centered in the object and the last 

node v of each ray r is part of the background, lines 2-5 ensure that the first node v of each ray 

r is bound to the source s by a capacity of  . In contrast, the last node of each ray will be 

bound to the sink by a capacity of  . 

The capacity value assigned to each T-weight is determined by the intensity contrast of the 

grey value ,( )i ngv v  of the currently regarded node ,i nv  to the previous node , 1i nv   on the same 

ray. The deviation from a given mean grey value *meanGV  determines if the node is 

connected to the sink or source and what capacity value will be assigned.  

Generally, with the variable flag false , a transition from averagely intensity high to 

intensity low values is expected and the connections and capacity values are set such that 

nodes of the intensity high area are connected to the source and nodes of the intensity low 

area are connected to the sink. For comparison see lines 21 – 27. If the flag true , a 

transition from intensity low to high values is expected and the connections and capacity 

values are set oppositely, see lines 28 – 34. Figure 48 illustrates this effect for the calculated 

cut in the same image slice depending on the flag value. 

 

 

Figure 48: Effect of two types of allocated T-weight capacities. In (1) the transition from intensity low 

to high areas is preferred, in (2) the transition from hight to low intesities is preferred (© TUM-

MIMED, 2013, MRI data from (Egger et al., 2012e)) 

In lines 7 and 8 two variables Phi and nPhi are introduced. With the knowledge of the scaling 

factor sf from the previous cut to the current template and the number u of nodes v per ray r, 

the current node v of each ray r representing the shape of the previous cut can be determined. 

The variable Phi represents the inverse scaling factor sf, while nPhi represents node index in 

the graph of the current slice that is closest to the node that was part of the cut set C in the 

graph of the template of a previous slice. This allows the implementation of a three zone 

strategy for the allocation of capacity values among all T-weighted edges. With the 

assumption that the object shape change from one slice to another is limited, it can be 

expected that the current cut will occur in a similar radius indicated by the node index n. 
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Thus, a zone I in a range ( ))Tn nPhi nPhi WF   , where TWF  is a t-weight parameter 

defining the zone width is implemented in line 17. With the assumption that all nodes in zone 

I will be part of the source set S, those nodes are connected with   to the source s and 0 to 

the sink t. All nodes in zone III, defined by ( ))Tn nPhi nPhi WF   , are assumed to be part 

of the sink set T and thus connected with   to the sink t and 0 to the source s. In zone II, 

defined by ( ( ))  ( ( ))T Tn nPhi nPhi WF and n nPhi nPhi WF      , the cut is expected and 

weights are allocated according to the previously discussed methodology (see lines 20 – 34). 

 

 

Figure 49: Implemented 3 zone strategy for the allocation of t-weights. (1) Cut of a previous slice used 

as template, (2) Allocation of t-weights according to their zone (3) Resulting cut in zone II (© TUM-

MIMED, 2013, MRI data from (Egger et al., 2012e)) 

The three zone strategy leads to more robust and stable and less variability in the resulting 

cuts. This is particularly important in the course of dragging the seed point. In slices where 

the object is very bright in a small area around the seed point, the calculated cut might exhibit 

an effect similar to collapsing and prefer a small areal cut. By imposing the cut to occur in 

zone II, this effect is suppressed which furthermore enhances segmentation quality, robustness 

and user handling (see Figure 49 and Figure 50). 

 

 

Figure 50. Effect of graph collapsing (1), Segmentation result with implemented three zone strategy, 

collapsing prevented (2) (© TUM-MIMED, 2013, MRI data from (Egger et al., 2012e)) 
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XY-Weights 

The xy-weights ( )XYE E G  can be considered as stiffness parameters and refers to (Li et al., 

2006). The implementation, depending on the parameter  , realizes different smoothness 

values for the resulting minimal cut and greater variability among possible cuts with the same 

cost amount. 

Their implementation follows 

 1, ,: ( , )xy i n i ne E c v v      (3.31) 

for the implementation of xy-weights to the previous ray and 

 1, ,: ( , )xy i n i ne E c v v      (3.32) 

to the next ray. Whereby applies that if 0n    take ,0iv . For 0  , the cut is exactly alike 

to the template shape. Figure 51 illustrates the effect of 1   and possible cuts of equal costs. 

 

 

Figure 51: Illustration of the xy-weight implementation, the effect of the parameter   and the 

resulting costs. Exemplary 1  , XYc   : (1) 2costs   , (2) 2costs   , (3) 

4costs   (altered from (Egger, 2012)) 

However, the use of the   parameter was limited in the course of thesis, because the higher 

  the more rugged are cut contours. With the template for a next slice dynamically adopted 

from the previous cut, the template can become increasingly rugged in the progress of the 

segmentation, too. However, rugged templates showed to be disadvantageous for the 

segmentation result, such that the use of parameter   was limited to values 2  . 

 

Min Cut Labeling 

After all nodes ( )V G  are assigned their weights ( , )x yc v v  (see Figure 52), the Boykov library 

labels all nodes either corresponding to the source s or the sink t. The nodes ( , )v C S T  of 

the min cut are determined such that the last node labeled source is included in C as node xc  

and the first node labeled sink is excluded: 

 

Algorithm 3: Pseudo code MinCut labeling 
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1. :  ( ( , ))Procedure LabelMinCut G V E  

2. 0x   

3. : 0 1i i k      

4. : 0 2k n n      

5.                , i nif v source  

6.                          , 1 i nif v sink   

7.                                         ,x i nc v  

8.                                         x    

 

 

Figure 52: Illustration of a completely connected and weight assigned graph network (© TUM-

MIMED, 2013) 

 

Object Processing 

The calculated cut of a specific slice is stored as segmentation result together with all previous 

cuts of this object. After the complete object is segmented, slices that have been skipped by 

the user have to be interpolated in order to generate a object contour in each image slice. This 

step is done with the MeVisLab CsoSliceInterpolater module and illustrated in Figure 53.  

Thereafter, the set of object contours is used for voxelization of the object and to generate a 

3D Object with the CsoConvertToImage module. The set of object contours is stored as cso 

file, while the voxelized 3D object is stored as nrrd file for further use in treatment planning. 
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Figure 53: Set of object contours: (1) slices skipped, (2) skipped slices interpolated, (3) voxelized 

object, (4) voxelized object (yellow) superimposed in the patient anatomy (© TUM-MIMED, 2013) 

 

3.5 Distinguishing Characteristics 

The presented segmentation methodology distinguishes itself from the systems introduced in 

section 2.2 and 2.3 in the following characteristics. 

1. Direct control over the segmentation result: Compared to fully automatic systems or 

systems based on user input scribbles with no further possible user influence on the 

segmentation result, the presented systems offers dexterous direct control over the 

segmentation result in each slice. Three different methodologies have been 

implemented to enhance the segmentation result. 

2. Few, intuitive user input parameters: In contrast to other systems, the presented 

methodology merely requires the user drawn contour as user input and intuitive 

interactions for segmentation improvement. No complex parameters such as the 

estimated object volume which demand initial training or experience are required. 

3. Robust and stable segmentation result: The mathematical principle of graph theory 

and minimal capacity cuts leads to a guaranteed global maximum. Furthermore, due to 
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the dynamic template-based graph construction, not only leaking is prevented but also 

the segmentation result is robust to object shape changes and contrast variations. 
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4 Evaluation 

4.1 Approach 

The presented segmentation methodology and the underlying algorithm was subject to an 

experiment comparing the computer assisted segmentation result to manually outlined 

segmentation results. The assed data comprises MR imaging data of the lower female pelvis 

acquired in the course of image guided gynecological brachytherapy. 

Objective 

The objective of this experiment is to evaluate the benefit regarding quality and time-saving 

that can be achieved by utilizing the presented methodology in contrast to the clinical gold 

standard of manual segmentation. 

Materials 

Computation was performed on a personal computer with Windows 7 Home Premium 64 Bit 

operating system and installed Service Pack 1. The processor was an Intel® Core™ i3 CPU 

M330 with 2.13 GHz dual core. Internal memory comprises 4.00 GB, with 3.68 GB available. 

The utilized MeVisLab® version is 2.3.1 with Qt version 4.8.0. All C++ implementations 

were conducted and compiled with Microsoft® Visual Studio 2008, Version 9. 

 

Table 2: Data sets and their respective performed MR sequence 

Data 

Set 

Magnet Resonance 

Sequence 

Matrix 

(voxel x voxel) 

Resolution 

(mm x mm) 

Slices Slice thickness 

(mm) 

1 Axial T2 weighted TSE 

(Turbo Spin Echo) 320 

320 x 320 0.625 x 0.625 26 3.0 

2 Axial T2 weighted TSE 

320 

320 x 320 0.625 x 0.625 30 3.0 

3 Axial T2 weighted TSE 

320 

320 x 320 0.625 x 0.625 50 3.0 

4 TrueFisp (fast imaging 

with steady state 

precession) 

384 x 384 0.781 x 0.781 72 3.0 

5 TrueFisp  320 x 256 0.875 x 0.875 28 3.0 

6 Axial T2 weighted TSE 

320 

320 x 256 0.875 x 0.875 22 3.0 

7 Axial T2 weighted TSE 

320 

320 x 256 0.875 x 0.875 40 3.0 
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To calculate the max flow/min cut the publicly available C++ library developed by Boykov 

and Kolmogorov (Boykov and Kolmogorov, 2004) (Kolmogorov, 2010) was utilized. 

The data used for this experiment is a set of 7 MRI datasets acquired during gynecological 

interstitial brachytherapy cases performed at the AMIGO suite of the Brigham & Women’s 

Hospital with a Siemens 3 Tesla Verio MR scanner. The complete data is available for 

download from (Egger et al., 2012e) and described in detail in (Kapur et al., 2012). The 

respective MR sequence of each data set can be seen in Table 1. 

For comparison of the algorithmic computed segmentation result, a medical doctor 

experienced in radiological segmentations of gynecological brachytherapy at the SPL, for 

comparison see Egger et al. (2012a), manually outlined the rectum/sigmoid and bladder. For 

the rectum/sigmoid, the manual segmentation was performed two times with a time difference 

of several months. For the bladder only one set of manual segmentations was available. 

 

Parameters 

The evaluation was performed with a constant t-weight parameter 0.2FWT  . The scaling 

factor sf and the number of rays r and points per ray n were [1.6]sf  , {40}r  for the rectum 

and {50}r  for the bladder, {40}n  for the rectum and {50}n  for the bladder.  

In order to estimate the complexity of the segmentation task, the respective number of slices 

where segmentation was performed as well as the object’s volume (cm³) and number of 

voxels was investigated. Furthermore, the time in seconds for the segmentation of each data 

set was acquired by screen capture recordings. 

 

Evaluation Methods 

The evaluation of the presented segmentation algorithm was performed with the Dice 

Similarity Coefficient (DSC) and the Hausdorff distance (HD). Moreover, the median and 

standard deviation of the DSC and Hausdorff distance were calculated. 

Dice Similarity Coefficient: 

The DSC is a common measurement procedure in image segmentation (Crum et al., 2006) 

(Zou et al., 2004). It measures the spatial overlap between two segmentation results noted by 

sets A, B and is defined as 

 ( , ) 2 ( ) / ( ( ) ( ))DSC A B V A B V A V B     (4.33) 

where A B  is the intersection area of sets A and B and ( )V   is the volume in mm³. 

Exemplary scenarios of three different DSC calculations are illustrated in Figure 54.  
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Figure 54: Illustration of three different segmentation scenarios and their respective DSC : (1) 

DSC(A,B) = 0%, (2) ( , ) 2 ( ) / ( ( ) ( ))DSC A B V A B V A V B    , (3) DSC=100% (© TUM-

MIMED, 2013) 

The calculation was performed by a MeVisLab® network depicted in Figure 55 utilizing 

Algorithm modules. 

 

 

Figure 55: MeVisLab® network for the computation of the DSC and Hausdorff  distance: (1) image 

loading and preprocessing, (2) DSC calculation, (3) visualization, (4) Hausdorff distance calculation 

(© TUM-MIMED, 2013) 

The image loading and preprocessing of the calculated result and manual segmentation result 

of Figure 55 (1) can be seen in detail in Figure 56. Both data sets are imported as nrrd data 

file types. 
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Figure 56: Image loading and preprocessing of the calculated and manual segmenation result for the 

calculation of the DSC and HD (© TUM-MIMED, 2013) 

The calculation of the DSC (Figure 55 (2)) is performed utilizing predefined Algorithm 

modules and is depicted in detail in Figure 57. 

 

 

Figure 57: Calculation of the DSC by predefined Algorithm modules (© TUM-MIMED, 2013) 

 

Hausdorff Distance: The Hausdorff distance measures the distance between two subsets of 

the metric space. It defines the maximum distance among all minimal distances between two 

sets (Jesorsky et al., 2001). 
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 ( , ) ( ( , ), ( , ))H A B max h A B h B A  (4.34) 

 ( , ) || ||a A b Bh A B max min a b    (4.35) 

Since the HD is non-symmetric, often ( , ) ( , )h A B h B A  applies (see Figure 57). 

 

 

Figure 58: Illustration of  the Hausdorff distance for two sets A and B where ( , ) ( , )h A B h B A  (© 

TUM-MIMED, 2013) 

The calculation of the Hausdorff distance (Figure 55 (4)) was performed using the 

MeVisLab® module itkHausdorffDistanceImageFilter shown in Figure 598 which returns the 

HD in voxels. 

 

 

Figure 59: MeVisLab® module used for calculation of the Hausdorff distance (© TUM-MIMED, 

2013) 

 

4.2 Experiments 

In each data set one segmentation utilizing the presented interactive segmentation 

methodology was conducted for the rectum/sigmoid and bladder. 

For documentation and time measurement purposes each segmentation performance was 

visually recorded by the screen capture tool Microsoft© Expression®. From the acquired 

videos the segmentation time needed was gained starting at the beginning of the user drawn 

contour until the end of the segmentation of the final slice (see Figure 58). 
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Figure 60: Experimental evalution of the InteractiveCut methdology with MeVisLab® (© TUM-

MIMED, 2013, MRI data from (Egger et al., 2012e)) 

Manual segmentations of the rectum/sigmoid and bladder have been performed in August 

2012. The second segmentation data set of the rectum/sigmoid has been performed in April 

2013 by the same physician. 

In the organ segmentation process, a segmentation was performed in each slice, such that a 

seed point and contour was calculated in each slice and the sum of segmented slices is in 

accordance to the manual segmentations. Therefore, no slices were skipped and no 

interpolation of slices has been performed. 

In order to evaluate the basic performance of the presented segmentation algorithm, no 

methods of improvement such as contour point dragging or reinitialization have been applied. 

Merely dragging of the seed point was utilized to find an optimal segmentation contour. 

Evaluation was performed such that before computer assisted segmentation the outlook of the 

respective manual segmentation was roughly studied. Otherwise it is challenging for non 

medical specialists to recognize the object outline and decide an optimal segmentation result. 

Regarding the rectum/sigmoid colon, data sets 1, 2, 3, 4, 5, 6, 7 of the manual segmentation 

version 2 were used as reference. For the evaluation of the bladder, since only one version of 

manual segmentations was available, this manual segmentation version 1 was used as 

reference for all data sets 1 – 7. 

The interactive algorithm could be performed smoothly without any delay or interruptions on 

the utilized personal computer. 

In the following the segmentation results for the rectum/sigmoid and the bladder are discussed 

in detail. 
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4.2.1 Rectum/Sigmoid Colon 

The results in Table 3 show the volumetric and time data for the manual expert segmentations 

of the rectum/sigmoid colon. According to the performing physician, in average the 

segmentation per data set took 300 sec (5 min) to perform.  

 

Table 3: Manual rectum/sigmoid colon segmentation 1 & 2. M1 indicates the first manual data set, 

M2 indicates the second manual data set 

Data 

set 

volume (mm³) 

 

slices 

 

 

M1 M2 M1|M2 

1 53227 47223 25 

2 38809 31635 25 

3 24802 18287 18 

4 37186 28205 26 

5 n.a. 37110 27 

6 41787 39164 22 

7 99957 100194 40 

median 40298 37110 25 

In comparison to the manual expert segmentation, the InteractiveCut algorithm segmented a 

smaller volume in all cases except case 7, where a slightly larger volume was segmented. 

Furthermore, the InteractiveCut algorithm achieved an median segmentation time per data set 

of 128 seconds compared to the manual segmentation, which represents a ~60% time saving 

(see Table 4). 

The segmentation results of the InteractiveCut for the data sets 1, 2, 3, 4, 5, 6, 7 have been 

compared to the expert manual segmentation results M2. The InteractiveCut algorithm 

achieved an average DSC of 83.85±4.08% when compared to M2 (see Table 5). 

The two manual expert segmentation versions M1 and M2 have been compared in an intra 

analysis and a DSC has been calculated in order to precisely asses the DSC value of the 

InteractiveCut result. The intra analysis between manual segmentation data set M1 and M2 

yielded a DSC of 83.97±8.08%. This value reflects the difficulty inherent in the segmentation 

of the rectum/sigmoid colon. As mentioned in section 1, the difficulty of the segmentation of 

the rectum/sigmoid colon due to its inhomogeneity was also previously discussed by (Haas et 

al., 2008) (Huyskens et al., 2008) (Egger et al., 2012a). Furthermore, the time period between 

M1 and M2 exceeded 6 months, whereas for the InteractiveCut segmentation the respective 

manual segmentation was roughly studied for orientation due to lack of medical experience 

directly before the segmentation performance. 

 



 Evaluation 

 80 

Table 4: Interactive Cut rectum/sigmoid colon segmentation 

 Data 

set volume (mm³) time (sec) slices 

1 51734 141 25 

2 27945 128 25 

3 18915 113 18 

4 21207 117 26 

5 32473 158 27 

6 38073 104 22 

7 103171 228 40 

median 32473 128 25 

Regarding the Hausdorff distance, the InteractiveCut achieved an average value of 

11.05±6.81 mm voxel, compared to the average Hausdorff distance of 11.76±7.54 mm voxel 

between M1 and M2. 

 

Table 5: Comparison of the InteractiveCut results to expert manual segmentation results. IC indicates 

the InteractiveCut result, M2 the respective manual expert data set, n.a. indicates non 

availability of the respective data set 

 DSC (%) Hausdorff dist. (voxel) 

Data set IC – M2 M1 – M2 IC – M2 M1 – M2 

1 88.43 86.93 11.04 4.03 

2 80.88 85.16 6.48 11.45 

3 79.04 78.19 25.47 18.92 

4 80.17 70.37 11.05 22.29 

5 84.78 n.a. 9.34 n.a. 

6 89.54 91.05 4.36 9.78. 

7 84.14 91.40 9.64 4.12 

µ ± σ 83.85±4.08 83.97±8.08 11.05±6.81 11.76±7.54 

min 79.04 70.37 4.36 4.03 

max 89.54 91.40 25.47 22.29 

Figure 61 shows exemplary segmentation results taken from data set 1 and 3. The red area 

represents the segmentation result of the InteractiveCut, whereas the green area represents the 

manual expert result. The image (5) depicts the voxelized segmentation result of the manual 

segmentation, image (6) depicts the InteractiveCut result. 
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Figure 61: Segmentation results of the rectum/sigmoid colon. For (2) and (4) the red area indicates the 

InteractiveCut result, the green area the expert manual segmentation result. (5) voxelized manual 

segmentation, (6) voxelized InteractiveCut segmentation (© TUM-MIMED, 2013, MRI data from 

(Egger et al., 2012e)) 

Challenges for the algorithm occurred where the rectum/sigmoid colon shape changed from 

rotation symmetric to strongly concave as depicted in Figure 62. Thereby, the algorithm is 

challenged to adopt the graph template to strong shape change within one slice difference. 

Furthermore, the seed point rooted star-like node distribution corrupts an optimal sampling 

rate in terms of area within concave object shapes. 
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Figure 62: A concave shape can challenge the algorithm due to its seed point rooted star-like node 

distribution. (2) manual segmentation (green), InteractiveCut segmentation (red), (3) and (4) illustrate 

strong bending of the object length axis where strong object shape changes can occur (© TUM-

MIMED, 2013, MRI data from (Egger et al., 2012e)) 
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4.2.2 Bladder 

In accordance to the rectum/sigmoid colon, the bladder as an organ-at-risk was also subject to 

the evaluation of the InteractiveCut methodology. For the bladder, however, only one set of 

manual expert segmentation data sets were available, such that an intra-analysis between two 

manual segmentations was not performed. 

In Table 6 the data of the manual expert segmentation is confronted with the results of the 

InteractiveCut segmentation. In average, it took about 300 seconds (5 min) for the physician 

to segment each data set. Compared to the rectum, the bladder is larger in volume, however, it 

is filled with contrast medium such that segmentation is supported. With the utilization of the 

InteractiveCut methodology the time per data set reduced to a median of 62 seconds in 

average, which represents a time-saving relation of ~1/5 (see table 6). 

 

Table 6: Comparison bladder manual/InteractiveCut segmentation, M refers to the manual 

segmentation results, IA to the InteractiveCut segmentation result. For data set 5 no 

manual segmentation was available 

Data 

set 

volume (mm³) 

 

time 

(sec) 

slices 

 

M IA IA M/IA 

1 89356 101193 52 10 

2 71456 64196 59 15 

3 170913 144605 115 20 

4 147200 148387 111 17 

6 113160 175543 64 22 

7 52247 61795 50 13 

median 101258 122899 62 16 

The spatial comparison between the manual and the InteractiveCut segmentation revealed an 

average DSC of 81.47±4.48, which correlates with the achieved value of 83.85±4.08 for the 

rectum/sigmoid colon (see Table 4 and Table 6). 

The average Hausdorff distance for the evaluation of the bladder yielded a value of 

13.25±2.10, which again, is in accordance to the results achieved for the rectum/sigmoid 

colon with a HD of 11.05±6.81 for the manual/interactiveCut comparision and 11.76±7.54 for 

the intra-manual comparison. 
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Table 7: Comparison bladder manual/interactiveCut segmentation 

 DSC (%) Hausdorff (voxel) 

Data set M – A M – A 

1 79.36 13.60 

2 77.42 13.89 

3 83.50 14.17 

4 85.45 14.38 

6 76.08 14.46 

7 86.98 9.01 

µ ± σ 81.47±4.48 13.25±2.10 

min 76.08 9.01 

max 86.98 14.46 

Figure 63 shows two exemplary results for the segmentation of the bladder. Due to the user 

drawn contour in a previous slice and its dynamic adaption, the InteractiveCut methodology 

achieves to segment the bladder in its complete outline, including both the high value contrast 

medium filled area and its air filled dark value area. With the three zone strategy, the high 

contrast edge between the contrast filled area and air filled area is spared from evaluation, as 

lying in zone I. Instead, the cut is performed in zone II, finding both the transition from the 

high value contrast medium filled area to the background and the transition from the low 

value contrast air filled area to the background. 
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Figure 63: Comparison of segmentation result performed manually (green) and with the InteractiveCut 

methodology (red). For (2), the dark, air filled area as well as the bright, contrast medium filled area is 

included in the segmentation (© TUM-MIMED, 2013, MRI data from (Egger et al., 2012e)) 

In accordance with the results of the rectum/sigmoid colon, the algorithm was particularly 

challenged where the object shape was strongly convex or concave (see Figure 62).  
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Figure 64: Due to the star like node distribution, segmentation challenges for the InteractiveCut 

algorithm occur where the object shape is strongly convex or concave (© TUM-MIMED, 2013, MRI 

data from (Egger et al., 2012e)) 

 

4.3 Discussion 

The evaluation of the presented segmentation methodology showed a DSC value of 

83.85±4.08 and a Hausdorff distance of 11.05±6.81 for the rectum/sigmoid colon compared to 

manual expert segmentation. An intra-analysis between two manual expert segmentations for 

all data sets revealed an average DSC value of 83.97±8.08 and a HD of 11.76±7.54 mm.  

In accordance with the rectum/sigmoid colon results, a comparison between algorithmic and 

manual expert segmentations for the bladder yielded an average DSC value of 81.47±4.48 and 

a HD of 13.25±2.10 mm, which is slightly lower than the rectum/sigmoid colon result. It has 

to be mentioned that the initial administration of contrast medium to the bladder and thus 

homogeneous high contrast appearance supports the use of fully automatic region growing 

algorithms, which could achieve DSC values of 90% (Egger et al., 2012a, Huyskens et al., 

2008). 
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The DSC value of 83.85±4.08 (rectum) and 81.47±4.48 (bladder) achieved with the algorithm 

presented in this thesis is thus in accordance with the common DSC values in the medical 

imaging domain regarded as successful as mentioned above. In consideration of the 

publication of Huyskens et al. (2008) which evaluated the Varian Inc. Smart Segmentation 

Tool® and where the segmentation result of the rectum was classified “not acceptable to 

acceptable” and yielded a DSC of 52% and “good to excellent” with a DSC of 90% for the 

bladder, the DSC value of 83% (rectum) and 81% (bladder) achieved in this thesis is 

considerately good for the rectum while lower for the bladder. 

The intra analysis of Huyskens et al. (2008) between two manual segmentations of different 

physicians revealed a DSC of 76% for the rectum, compared to 83% in this thesis. These 

values substantiate the particular difficulty of rectum segmentation mentioned by Huyskens et 

al. (2008) not only for computer algorithms but also for clinicians. 

Regarding the Hausdorff distance Martinez et al. (2012) achieved 7.52±2.3 mm for the rectum 

and 19.09±3.1 mm for the bladder. The HD achieved in this thesis are 11.05±6.81 mm 

(rectum) and 13.25±2.10 mm (bladder), where one main reason for these values lies within 

the star-like node distribution originating in the central seed point and impairs equal sampling 

where the object outline is strongly convex or concave as described in section 4.2.1 and 4.2.2. 

Although the presented DSC (~80-90%) and HD (~7-20 mm) values might seem low, they 

represent current state-of-the-art research results in the medical domain in general and results 

achieved with commercially available and research tools for the rectum/sigmoid colon are 

even lower (52%). Beyond that, as shown by intra analysis DSC values achieved among 

clinicians, human segmentations as used in clinical daily routine reveal results in the same 

range of 80% -90%. Depending on the anatomical structure values are slightly higher, e.g. 

brain, or slightly lower, e.g. rectum/sigmoid colon for intra analysis. Furthermore, it has to be 

noted, that for pelvic radiotherapy procedures as compared to others, e.g. brain tumors, 

accurate local segmentation is less concerned by clinicians for soft organ radiotherapy and 

their OARs, e.g. rectum/sigmoid colon and bladder. Since these organs are prone to change 

their organ shape in the period from segmentation to treatment start due to air pockets, 

digestive activities, changes in patient position and weight loss in long term, segmentation 

results are always error prone and less dependable. To take these alterations into account, the 

segmented Gross Tumor Volume is always enhanced to the Clinical Target Volume and 

Planning Target Volume in the process of Treatment Planning, for comparison see section 

2.1.3 (Bille and Schlegel, 2002, Kauffmann et al., 2006). 

The time needed to segment one data set yielded 128 seconds for the rectum/sigmoid colon 

and 62 seconds for the bladder utilizing the presented methodology compared to average 300 

seconds for manual segmentation, which represents a time saving relation of ~60% and ~80%, 

respectively. In comparison the work of Haas et al. (2008), regarding the Varian Inc. Smart 

Segmentation® tool, the time needed to segment the bladder can be considered equal for the 

algorithm of this thesis and the Smart Segmentation® tool. The later needed 53 seconds in 

average for the fully automatic segmentation and the result was classified “excellent to good”, 

which includes “manual modification in a limited nr. of slices”, compared to 75 seconds for 

the complete and final segmentation of this thesis. Although in Haas et al. (2008) an average 

segmentation time needed for the rectum was given as 53 seconds without manual 

modification as well, compared to 141 seconds in this thesis for the complete segmentation, 

the quality was with a DSC of 52% considerately low, compared to 83% in this thesis. 

However, the result of 141 seconds for the complete rectum segmentation in this thesis is in 
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the range of the mentioned targeted time frame of 2 minutes for the automatic result without 

modifications of Haas et al. (2008). 

Not taken into account for the time evaluation of the algorithmic segmentation is the option to 

skip certain slices where the change in the object outline is limited. This possibility can 

accelerate the segmentation in a large extent, since only a fraction of all slices has to be 

concerned. 

Also not taken into account for qualitative evaluation of the algorithmic segmentation are the 

implemented tools of improvement regarding dragging of contour points and reinitialization. 

With those options the segmentation result can intuitively enhanced with fewer time effort. 

It can be said that segmentation quality achieved with the presented algorithm is in 

accordance with common commercial and research results in medical imaging and equal to 

results achieved in daily clinical routine by clinicians. The use of a locally limited template 

and the inherent convergence to a local minimum of graph cuts prevents leaking. Together 

with the interactive methodology of the presented approach, user input parameters are limited 

to a minimum and make this approach superior to fully automatic methodologies. Equal 

quality results together with its time saving potential make this approach advantageous to 

manual segmentation. 
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5 Conclusion 

The objective of this thesis was the development of a novel interactive graph-based 

segmentation methodology for the rectum/sigmoid colon as an Organ-At-Risk in the context 

of interstitial gynecological brachytherapy. The clinical gold standard for segmentation tasks 

is given by time and resource consuming slice-by-slice manual outlining of the region of 

interest. Although various fully automatic segmentation tools have been developed up to date, 

only few can guarantee robust results or are used in daily clinical routine. One drawback of 

automatic approaches is their complexity, limited flexibility and little provided user influence 

on the computed segmentation result where the algorithm is challenged. Thus, manual 

refinement of the computed segmentation is desirable and the motivation for the development 

of interactive segmentation approaches that allow direct and intuitive control over the 

segmentation result. 

The presented methodology is based on graph networks and transforms the image 

segmentation problem into a simple, undirected graph. A minimal cut separates the object of 

interest from the background area. The graph network distribution across the image is 

determined by a dynamically adapting template whose shape is gained from user input in the 

beginning and obtained from the segmentation contour of a previous slice in succeeding 

slices. Interactive dragging of the graph network seed point in the object center allows to 

calculate various segmentations in the same slice and thus helps to find the optimal result. 

Slices where no strong object contour change occurs can be skipped and are interpolated later. 

Evaluation of the algorithm was performed by comparing the computer assisted segmentation 

result with manual expert segmentations of the rectum/sigmoid colon and the bladder. The 

rectum/sigmoid colon yielded a DSC value of 83.85±4.08, the bladder 81.47±4.48. An intra-

analysis between two sets of manual expert segmentation results yielded a DSC value of 

83.97±8.08. Utilizing the presented methodology, the average time for the segmentation of 

one data set dropped from approximately 300s for one manually evaluated data set to 128 

seconds for the rectum/sigmoid colon and 62 for the bladder utilizing the presented 

methodology. 

Due to the star-like graph node distribution with the seed point at its origin, the algorithm was 

challenged where the object shape was particularly concave or convex. For future approaches 

multiple, equally distributed seed points could be utilized to guarantee an ideal areal sampling 

of the object and thus enhance the segmentation result quality. 
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Glossary 

AAM   Active Appearance Models 
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BWH   Brigham & Women’s Hospital, Boston, USA 
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Nrrd   Nearly Raw Raster Data 

OAR   Organ at Risk 

RSS   Robust Statistics Segmenter 

SP   Seed Point 

SPL   Surgical Planning Laboratory, Harvard Medical School, Boston 

TrueFisp  Fast Imaging With Steady State Precession 

TSE   Turbo Spin Echo 
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